Knowledge Resource Center for Ecological Environment in Arid Area
基于小波分解的沙尘天气发生日数预测组合模型研究--以2008-2016年策勒沙漠-绿洲过渡带沙尘天气发生时序为例 | |
其他题名 | Study on the Combined Model of Forecasting the Days of Sand-Dust Weather Based on Wavelet Decomposition-Taking the Time Series of Dust Weather in the Transitional Zone of Qira Desert- Oasis During 2008-2016 as an Example |
庞金凤1; 刘波2; 张波3; 张朋朋4; 王波1; 曾凡江3![]() | |
来源期刊 | 气象
![]() |
ISSN | 1000-0526 |
出版年 | 2019 |
卷号 | 45期号:5页码:651-658 |
中文摘要 | 新疆南疆地区是扬沙浮尘的主要高发区,风沙对当地生产生活影响严重。为揭示当地风沙天气变化特征并预测未来变化趋势,通过小波分解方法,将塔克拉玛干沙漠南缘的策勒沙漠-绿洲过渡带2008-2016年沙尘天气发生时序分解为平稳性波动项和非线性趋势项,根据两项数据的特性,针对性选取自回归(AR)模型和最小二乘支持向量机(LSSVM)进行变化趋势预测,最后利用加法原则重构实现沙尘天气发生日数时序预测。结果表明:研究区沙尘天气发生属于典型的春夏型,主要集中在3-9月,峰值出现在5月。组合模型预测值与实测值基本吻合,具有较高的预测精度(绝对误差为4.00 d,均方根误差为3.76 d),同时,其结果与AR模型、LSSVM模型预测结果相比较也显示出一定的优越性(组合模型相关系数相比AR、LSSVM分别提高了0.12、0.31),具有较好的应用前景,可为研究区预防风沙灾害及指导实际生产生活提供科学依据。 |
英文摘要 | The area of southern Xinjiang is a high occurrence area of dust weather,which has a serious impact on local residents’ life.To reveal the characteristics of local wind-sand weather variation and predict future trends,a wavelet decomposition method is used to decompose the time series of dust weather in the southern edge of the Taklimakan Desert from 2008 to 2016 into stationary fluctuation terms and nonlinear trend terms,according to the characteristics of the data.The autoregressive (AR) model and the least square support vector machine (LSSVM) are selected to predict the variation trend.Finally,the time series prediction of the number of dust weather days is achieved by the addition principle reconstruction.The results show that the dust weather is a typical spring and summer type,mainly concentrated in the period from March to September,and the peak value appears in May.The predicted value of the combined model is basically consistent with the measured value,and has a higher prediction accuracy (absolute error is 4 d,root mean square error is 3.764 d).Compared with the prediction results of AR model and LSSVM,the correlation coefficient of combined model increases 0.12 and 0.31 respectively),and has a better application prospect.Thus,it could provide scientific basis for preventing wind and sand disaster and guiding actual production and life in the research area. |
中文关键词 | 风沙天气 ; 小波分解 ; 组合模型 ; AR模型 ; LSSVM模型 |
英文关键词 | dust weather wavelet decomposition combination model autoregressive (AR) model least square support vector machine (LSSVM) model |
语种 | 中文 |
国家 | 中国 |
收录类别 | CSCD |
WOS类目 | METEOROLOGY ATMOSPHERIC SCIENCES |
WOS研究方向 | Meteorology & Atmospheric Sciences |
CSCD记录号 | CSCD:6508299 |
来源机构 | 中国科学院新疆生态与地理研究所 |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/239372 |
作者单位 | 1.中国科学院新疆生态与地理研究所;;中国科学院新疆生态与地理研究所;;新疆策勒荒漠草地生态系统国家野外科学观测研究站;;中国科学院干旱区地理与生物资源重点实验室;;中国科学院大学, ;;荒漠与绿洲生态国家重点实验室;;新疆策勒荒漠草地生态系统国家野外科学观测研究站;;中国科学院干旱区地理与生物资源重点实验室;;, 乌鲁木齐;;乌鲁木齐;;策勒;;乌鲁木齐;;, ;;;;;;;;北京 830011;;830011;;848300;;830011;;100049; 2.临沂大学, 临沂, 山东 276000, 中国; 3.中国科学院新疆生态与地理研究所;;中国科学院新疆生态与地理研究所;;新疆策勒荒漠草地生态系统国家野外科学观测研究站;;中国科学院干旱区地理与生物资源重点实验室, ;;荒漠与绿洲生态国家重点实验室;;新疆策勒荒漠草地生态系统国家野外科学观测研究站;;中国科学院干旱区地理与生物资源重点实验室, 乌鲁木齐;;乌鲁木齐;;策勒;;乌鲁木齐, ;;;;;; 830011;;830011;;848300;;830011; 4.西安电子科技大学, 西安, 陕西 710126, 中国 |
推荐引用方式 GB/T 7714 | 庞金凤,刘波,张波,等. 基于小波分解的沙尘天气发生日数预测组合模型研究--以2008-2016年策勒沙漠-绿洲过渡带沙尘天气发生时序为例[J]. 中国科学院新疆生态与地理研究所,2019,45(5):651-658. |
APA | 庞金凤,刘波,张波,张朋朋,王波,&曾凡江.(2019).基于小波分解的沙尘天气发生日数预测组合模型研究--以2008-2016年策勒沙漠-绿洲过渡带沙尘天气发生时序为例.气象,45(5),651-658. |
MLA | 庞金凤,et al."基于小波分解的沙尘天气发生日数预测组合模型研究--以2008-2016年策勒沙漠-绿洲过渡带沙尘天气发生时序为例".气象 45.5(2019):651-658. |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[庞金凤]的文章 |
[刘波]的文章 |
[张波]的文章 |
百度学术 |
百度学术中相似的文章 |
[庞金凤]的文章 |
[刘波]的文章 |
[张波]的文章 |
必应学术 |
必应学术中相似的文章 |
[庞金凤]的文章 |
[刘波]的文章 |
[张波]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。