Knowledge Resource Center for Ecological Environment in Arid Area
基于灰度关联-岭回归的荒漠土壤有机质含量高光谱估算 | |
其他题名 | Hyperspectral estimation of desert soil organic matter content based on gray correlation-ridge regression model |
王海峰1; 张智韬1; 陈俊英1; 韩文霆 | |
来源期刊 | 农业工程学报
![]() |
ISSN | 1002-6819 |
出版年 | 2018 |
卷号 | 34期号:14页码:124-131 |
中文摘要 | 为改善高光谱技术对荒漠土壤有机质的估测效果,该文采集了以色列Seder Boker地区的荒漠土壤,经预处理、理化分析后将土样分为砂质土和黏壤土2类,再通过光谱采集、处理得到6种光谱指标:反射率(reflectivity, REF)、倒数之对数变换(inverse-log reflectance,LR)、去包络线处理(continuum removal,CR)、标准正态变量变换(standard normal variable reflectance,SNV)、一阶微分变换(first order differential reflectance,FDR)和二阶微分变换(second order differential reflectance,SDR)。通过灰度关联(gray correlation,GC)法确定SNV、FDR、SDR为敏感光谱指标,采用偏最小二乘回归(partial least squares regression,PLSR)法和岭回归(ridge regression,RR)法,构建基于敏感光谱指标的土壤有机质高光谱反演模型,并对模型精度进行比较。结果表明:砂质土有机质含量的反演效果要优于黏壤土;基于SNV指标建立的模型决定系数R~2和相对分析误差RPD均为最高、均方根误差RMSE最低,所以SNV是土壤有机质的最佳光谱反演指标;对SNV-PLSR模型和SNV-RR模型综合比较得出,SNV-RR模型仅用全谱4%左右的波段建模,实现了更为理想的反演效果:其中,对砂质土有机质的预测能力极强(R_p~2为0.866,RMSE为0.610 g/kg、RPD为2.72),对黏壤土有机质的预测能力很好(R_p~2为0.863,RMSE为0.898 g/kg、RPD为2.37)。荒漠土壤有机质GC-SNV-RR反演模型的建立为高光谱模型的优化、土壤有机质的快速测定提供了一种新的途径。 |
英文摘要 | Organic matter content in soil is one of the most significant indicators evaluating the soil fertility, and its dynamic monitoring is good for further development of accurate agriculture. In recent years, obtaining Vis-NIR (visible - near infrared) continuous spectrum data of soil through hyperspectral technique and realizing accurate inversion prediction according to organic matter spectrum reflection characteristics have become a hot topic in current remote sensing field. However, in the hyperspectral inversion process of desert soil organic matter, there exists the problem of low organic matter content, weak spectrum response and low model precision. The research collected different soil samples in Seder Boker region, south of Israel, divided the experimental soil samples into sandy soil and clay loam after particle size analysis in the lab, and applied potassium dichromate external heating method to measure the organic matter content in the soil. The raw hyperspectral reflectance of soil samples was measured by the ASD FieldSpec 3 instrument. After data preprocessing and different mathematical manipulation, 6 spectral indicators were obtained, i.e. reflectivity (REF), inverse-log reflectance (LR), continuum removal reflectance (CR), standard normal variable reflectance (SNV), first-order differential reflectance (FDR) and second-order differential reflectance (SDR). Then, gray correlation degree (GCD) between different spectral indicators and organic matter content was calculated, and SNV, FDR and SDR through gray correlation (GC) test (GCD>0.90) were chosen as the sensitive spectral indicators. Moreover, hyperspectral inversion model of soil organic matter was built based on sensitive spectral indicator using partial least squares regression (PLSR) method and ridge regression (RR) method, and the precision of inversion result was verified and compared. And then, the performances of these models were evaluated by the determination coefficient for calibration set (Rc 2), determination coefficient for prediction set (R_p~2), root mean squared error (RMSE) and relative percent deviation (RPD). The results indicated that: Soil particle size has a certain impact on the spectral response of organic matter, and the inversion effect of hyperspectral model on the organic matter content in sandy soil is superior to clay loam; after comparing and analyzing the models built according to different spectral indicators, Rc 2, R_p~2 and RPD of SNV-PLSR soil model and SNV-RR soil model built according to SNV are the highest and RMSE is the lowest, so SNV is the optimal spectral inversion indicator of soil organic matter; SNV-RR model has the most ideal inversion effect on organic matter content of these 2 kinds of soil: For sandy soil, Rc 2 is 0.887, R_p~2 is 0.866, RMSE is 0.610 g/kg and RPD is 2.72; for clay loam, Rc 2 is 0.889, R_p~2 is 0.863, RMSE is 0.898g/kg and RPD is 2.37. After analysis, it is known that SNV-RR model has extremely strong forecast ability for organic matter of sandy soil, and very good quantitative forecast ability for organic matter of clay loam. In addition, compared with PLSR model, Rc 2 and R_p~2 of RR model decline slightly. |
中文关键词 | 遥感 ; 模型 ; 有机质 ; 荒漠土壤 ; 高光谱 ; 灰度关联 ; 岭回归 |
英文关键词 | remote sensing models organic matter desert soil hyperspectral gray correlation ridge regression |
语种 | 中文 |
国家 | 中国 |
收录类别 | CSCD |
WOS类目 | AGRICULTURE MULTIDISCIPLINARY |
WOS研究方向 | Agriculture |
CSCD记录号 | CSCD:6287512 |
来源机构 | 西北农林科技大学 |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/237984 |
作者单位 | 1.西北农林科技大学水利与建筑工程学院;;西北农林科技大学中国旱区节水农业研究院, 旱区农业水土工程教育部重点实验室;;, 杨凌;;杨凌, ;; 712100;;712100; 2.本古里安大学Blaustein沙漠研究所, 思德博克, 84990 |
推荐引用方式 GB/T 7714 | 王海峰,张智韬,陈俊英,等. 基于灰度关联-岭回归的荒漠土壤有机质含量高光谱估算[J]. 西北农林科技大学,2018,34(14):124-131. |
APA | 王海峰,张智韬,陈俊英,&韩文霆.(2018).基于灰度关联-岭回归的荒漠土壤有机质含量高光谱估算.农业工程学报,34(14),124-131. |
MLA | 王海峰,et al."基于灰度关联-岭回归的荒漠土壤有机质含量高光谱估算".农业工程学报 34.14(2018):124-131. |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[王海峰]的文章 |
[张智韬]的文章 |
[陈俊英]的文章 |
百度学术 |
百度学术中相似的文章 |
[王海峰]的文章 |
[张智韬]的文章 |
[陈俊英]的文章 |
必应学术 |
必应学术中相似的文章 |
[王海峰]的文章 |
[张智韬]的文章 |
[陈俊英]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。