Arid
基于MASLCM的沙漠化空间模拟方法研究
其他题名Spatial Simulation Method of Desertification Based on MASLCM Model
马欢1; 于强1; 岳德鹏1; 张启斌1; 黄元1; 高敬雨2
来源期刊农业机械学报
ISSN1000-1298
出版年2017
卷号48期号:10页码:134-141
中文摘要以干旱区典型城市磴口县为研究区,利用1995-2015年每隔5年的Landsat TM影像通过遥感解译获取研究区20年的各等级沙漠化空间分布,利用GIS空间分析和重心迁移模型分析沙漠化景观时空变化趋势。并以2010年沙漠化分类数据为基期年数据,利用Logistic元胞自动机(Cellular automataMarkov,CAMarkov)模型(简称LCM)并引入多智能体系统(Multi-agent system,MAS)模型修正转移规则,预测2015年沙漠化分类情况及其空间分布格局。研究结果表明:磴口县20年间重度及极重度沙漠化面积减小,轻度沙漠化景观面积逐渐增大,其中2015年的非沙漠化景观达到37.09%,各类型沙漠化重心远离磴口县城,呈现良好态势。引入MAS模型的CAMarkov预测模型能够显著提升模型的模拟精度,所预测的2015年数据结果Kappa系数达到0.62,高于CAMarkov模型模拟结果,能较好预测干旱区沙漠化分布情况,为沙漠化监管与治理提供了技术支持。
英文摘要Dengkou County, a typical city in the arid area, was taken as study area, and the spatial distribution of desertification for every five years from 1995 to 2015 in the study area was obtained by Landsat TM images remote sensing interpretation. Spatial and temporal variation trend of desertification landscape was analyzed by using GIS spatial analysis and gravity center migration model. Based on the 2010 desertification classification data, the 2005-2010 desertification classification area transfer matrix table was used as Markov transfer matrix file. Using the Logistic CAMarkov model (LCM) and introducing the multi-agent system (MAS) model to correct the transfer rule, the desertification classification and its spatial distribution pattern were forecasted and compared to analyze the advantages and disadvantages of the two simulation methods. The results showed that the desertification area of Dengkou County had a significant reduction in severe desertification and very severe desertification over the past 20 years. Mild desertification landscape area and non-desertification area were gradually increased, of which non-desertification landscape reached 37.09% in 2015. Various types of desertification center of gravity left away from Dengkou County, showing a good momentum. The CAMarkov prediction model with MAS model can significantly improve the simulation accuracy of the model. The predicted Kappa coefficient reached 0.62, which was higher than that of CAMarkov model. It can better predict the distribution of desertification in arid areas, and provide technical support for the current and future desertification regulation and governance.
中文关键词干旱区 ; 沙漠化 ; 多智能体系统 ; 模拟
英文关键词CAMarkov arid region desertification CAMarkov multi-agent system simulation
语种中文
国家中国
收录类别CSCD
WOS类目GEOGRAPHY
WOS研究方向Geography
CSCD记录号CSCD:6089049
来源机构北京林业大学
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/236360
作者单位1.北京林业大学, 精准林业北京市重点实验室, 北京 100083, 中国;
2.北京明德立达农业科技有限公司, 北京 100085, 中国
推荐引用方式
GB/T 7714
马欢,于强,岳德鹏,等. 基于MASLCM的沙漠化空间模拟方法研究[J]. 北京林业大学,2017,48(10):134-141.
APA 马欢,于强,岳德鹏,张启斌,黄元,&高敬雨.(2017).基于MASLCM的沙漠化空间模拟方法研究.农业机械学报,48(10),134-141.
MLA 马欢,et al."基于MASLCM的沙漠化空间模拟方法研究".农业机械学报 48.10(2017):134-141.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[马欢]的文章
[于强]的文章
[岳德鹏]的文章
百度学术
百度学术中相似的文章
[马欢]的文章
[于强]的文章
[岳德鹏]的文章
必应学术
必应学术中相似的文章
[马欢]的文章
[于强]的文章
[岳德鹏]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。