Arid
基于高分辨遥感数据的胡杨与柽柳树冠提取
其他题名Extraction of Tree-crown of Populus Euphratica and Tamarix Ramosissimabased on High Resolution Remote Sensing Data
周艳飞1; 张绘芳2; 李霞1; 杨帆1; 丁程锋1
来源期刊遥感技术与应用
ISSN1004-0323
出版年2015
卷号30期号:3页码:510-517
中文摘要胡杨、柽柳是干旱荒漠区生境的指示种,其树冠提取是荒漠生境遥感定量监测的基础。以塔里木河下游胡杨、柽柳为研究对象,基于QuickBird数据,使用光谱单数据源SVM、光谱结合纹理SVM、面向对象分类和最大似然分类法提取树冠。结果表明:①光谱结合纹理SVM比光谱单源SVM分类精度高9.65%,冠幅估测精度高7.18%,表明高分辨影像上纹理是提高分类精度的重要因素;②面向对象分类法精度最高,分类总体精度86.47%,较光谱单源SVM提高15.67%,较光谱结合纹理SVM提高6.02%,较最大似然法提高22.58%,其冠幅估测精度达87.45%。它兼顾面向对象影像分割与支持向量机方法优点,有效利用分割对象光谱、纹理和空间等信息,较好地解决了其他方法同物异谱、异物同谱造成提取树冠破碎的问题,使树冠提取具有较好的稳定性和较高精度。
英文摘要P.euphraticaand T.ramosissimaare are indicator species of ecological environment in arid desertarea,the extraction of their tree-crown is the basis of quantitative monitoring of desert habitat by means of remote sensing.In this paper,Taking P.euphratica and T.ramosissimainin the lower reaches of Tarim River as the study object,the method of single data source SVM (Support Vector Machine)based on spectrum characteristics,SVM method based spectrum and texture characteristics,object-oriented classification method and maximum likelihood classification method was used to extract tree-crown from the QuickBird image.Single data source SVM method and maximum likelihood classification method is applied to classify the image which contains only spectrum characteristics.Other methods were carried out as follows:Firstly, calculating the textural measures by grey level co-occurrence matrix and determining the optimal parameters for texture information by principal component analysis.Secondly,the optimal texture bands and the spectrum bands were combined into a new image.Finally,the support vector machine method and object-oriented classification method was applied to classify the new image.The results show that:(1)The classification accuracy of SVM method based spectrum and texture characteristics is 9.65%,wich higher than that of single data source SVM method,the estimated accuracy of average crown diameter of the former is 7.18%,which higher than the later.The result indicates that texture is an important factor to improve the classification accuracy in high resolution images;(2)The tree-crown extraction accuracy of object-oriented classification is the highest.Its classification overall accuracy is 86.47%.The accuracy is 15.67% higher than single data source SVM method,6.02% higher than SVM method based on spectrum and texture characteristics,and 22.58% higher than maximum likelihood classification.Its estimated accuracy of average crown diameter is 87.45%,which suggests that object-oriented classification method can effectively extract tree-crown information in high-resolution image and is better than the other classification methods.
中文关键词面向对象 ; 支持向量机 ; 纹理 ; 树冠提取
英文关键词QuickBird Object-oriented Support vector machine Texture Tree-crown extraction QuickBird
语种中文
国家中国
收录类别CSCD
WOS类目REMOTE SENSING
WOS研究方向Remote Sensing
CSCD记录号CSCD:5473388
来源机构新疆农业大学
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/233555
作者单位1.新疆农业大学草业与环境科学学院, 乌鲁木齐, 新疆 830052, 中国;
2.新疆林业科学院, 乌鲁木齐, 新疆 830000, 中国
推荐引用方式
GB/T 7714
周艳飞,张绘芳,李霞,等. 基于高分辨遥感数据的胡杨与柽柳树冠提取[J]. 新疆农业大学,2015,30(3):510-517.
APA 周艳飞,张绘芳,李霞,杨帆,&丁程锋.(2015).基于高分辨遥感数据的胡杨与柽柳树冠提取.遥感技术与应用,30(3),510-517.
MLA 周艳飞,et al."基于高分辨遥感数据的胡杨与柽柳树冠提取".遥感技术与应用 30.3(2015):510-517.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[周艳飞]的文章
[张绘芳]的文章
[李霞]的文章
百度学术
百度学术中相似的文章
[周艳飞]的文章
[张绘芳]的文章
[李霞]的文章
必应学术
必应学术中相似的文章
[周艳飞]的文章
[张绘芳]的文章
[李霞]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。