Knowledge Resource Center for Ecological Environment in Arid Area
基于高光谱反射特性的土壤水盐状况预测模型研究 | |
其他题名 | Prediction Model of Soil Water-salt Based on Hyperspectral Reflectance Characteristics |
王海江1; 张花玲1; 任少亭2; 李保国1 | |
来源期刊 | 农业机械学报
![]() |
ISSN | 1000-1298 |
出版年 | 2014 |
卷号 | 45期号:7页码:133-138 |
中文摘要 | 为了能够及时、精准、动态地监测盐渍土水分和盐分含量变化,以新疆玛纳斯河流域绿洲农田为研究对象,应用高光谱分析技术,采用偏最小二乘回归方法(PLSR)分析土壤反射光谱特征值与水分、盐分含量间的关系,建立盐渍化土壤水、盐含量的高光谱预测模型,并对模型的稳定性和预测能力进行检验。结果表明:12种数据变换中分别采用CR、(lgR)’能够有效提高土壤盐分、含水率预测模型精度。水分预测模型中土壤盐分含量小于等于8.19 dS/m时,R_(cal)~2均大于0.79,外部验证R_(val)~2均大于0.64,RMSEP间差异不显著,预测精度较好;土壤盐分含量大于等于10.25 dS/m时,外部验证R_(val)~2不足0.45,预测精度较差。土壤盐分预测模型中当含水率小于15%时,预测R 2_cal均大于0.77,外部验证R_(val)~2大于0.64,RMSEP小于4.3,预测精度较好,土壤含水率大于15%时,模型预测精度较差。结果表明土壤中水分、盐分含量较大时,对水盐预测模型的估算精度均会产生影响。 |
英文摘要 | Taking farmland of oasis in Xinjiang Manas as the example, in order to timely, accurately and dynamically monitor water and salinity of saline soils,the partial-least squares regression (PLSR) for model was applied to model the moisture and salt content of different moistures and salt soils based on hyperspectral analysis technique, the stability and predictive ability of the model was validated. The results show that the prediction precision of soil salinity and moisture were effectively improved through continuum removal (CR) and the logarithm of first order differential (lgR)’ in 12 kinds of data transformation. The prediction models were better when soil salt content was less than 8.19 dS/m, R 2_cal were greater than 0.79, R_(val)~2 were greater than 0.64, with no significant difference between RMSEP. The prediction precision was poor when soil salt content was greater than 10 dS/m with R_(val)~2 less than 0.45 in the moisture prediction models. The better prediction accuracy when the moisture is less than 15%, R_(cal)~2 were greater than 0.77, R_(val)~2 were greater than 0.64,with RMSEP less than 4.6. The model prediction accuracy was poor when soil moisture greater than 15%. It was concluded that the large soil moisture, salt content will have a significant impact on salt-water prediction model. |
中文关键词 | 土壤 ; 含水率 ; 盐分 ; 高光谱 ; 预测模型 ; 偏最小二乘回归 |
英文关键词 | Soil Water content Salinity Hyperspectral Prediction model PLSR |
语种 | 中文 |
国家 | 中国 |
收录类别 | CSCD |
WOS类目 | AGRICULTURE MULTIDISCIPLINARY |
WOS研究方向 | Agriculture |
CSCD记录号 | CSCD:5178346 |
来源机构 | 石河子大学 ; 中国农业大学 |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/231511 |
作者单位 | 1.中国农业大学资源与环境学院, 北京 100094, 中国; 2.石河子大学农学院, 石河子, 新疆 832003, 中国 |
推荐引用方式 GB/T 7714 | 王海江,张花玲,任少亭,等. 基于高光谱反射特性的土壤水盐状况预测模型研究[J]. 石河子大学, 中国农业大学,2014,45(7):133-138. |
APA | 王海江,张花玲,任少亭,&李保国.(2014).基于高光谱反射特性的土壤水盐状况预测模型研究.农业机械学报,45(7),133-138. |
MLA | 王海江,et al."基于高光谱反射特性的土壤水盐状况预测模型研究".农业机械学报 45.7(2014):133-138. |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[王海江]的文章 |
[张花玲]的文章 |
[任少亭]的文章 |
百度学术 |
百度学术中相似的文章 |
[王海江]的文章 |
[张花玲]的文章 |
[任少亭]的文章 |
必应学术 |
必应学术中相似的文章 |
[王海江]的文章 |
[张花玲]的文章 |
[任少亭]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。