Knowledge Resource Center for Ecological Environment in Arid Area
基于马尔柯夫模型的草原退化动态时空特征研究 | |
其他题名 | A study on spatial-temporal characteristics of grassland degradation using the Markov model |
刘爱军1; 王保林2; 陈喜梅3; 杨胜利3; 郑淑华3 | |
来源期刊 | 草业学报
![]() |
ISSN | 1004-5759 |
出版年 | 2012 |
卷号 | 21期号:5页码:229-236 |
中文摘要 | 草原植被覆盖动态时空特征是理解人类活动和自然因素影响下草原退化的关键。本研究利用2000和2010年TM影像,利用监督分类方法,对内蒙古草原退化、沙化和盐渍化时空分布特征探测和制图,同时对分类结果进行验证。检验结果表明,采用监督分类结合地面训练样本进行草原退化动态特征检测能提高分类精度,草原沙化和盐渍化分类精度分别都达到90%以上,退化草原分类精度为75%。在草原退化程度分类检测基础上,计算2000-2010年草原退化、沙化、盐渍化面积概率转移矩阵,并基于马尔柯夫模型,对未来20年间草原动态特征进行预测。研究结果表明,十年间,内蒙古草原的退化、沙化程度均呈减弱趋势。预测结果显示,在草原与生态保护建设工程持续稳定有效建设前提下,内蒙古草原呈现良性发展趋势,退化及沙化状况将持续得到改善。研究也指出,基于遥感技术与马尔柯夫模型有机结合分析草原退化动态特征是一种快速有效的途径。 |
英文摘要 | The spatial and temporal features of grassland cover conversion(GCC) serve as a useful input for understanding the desertification process and degradation of grassland caused by anthropogenic activities and extreme natural events in general.Thematic Mapper data(TM 30 m) were used to detect and map degraded grassland features both spatially and temporally.Two data sets of TM 30 m data were collected from the years 2000 to 2010.Supervised classifications were developed for each of the GCC change detection of the three cases(degradation,desertification,and salinization).To address this situation,the field data were used to test the GCC detection of change results presented in this paper.The GCC change detection methods worked reasonably well and detection accuracy of deserted and salinized output was >90% although degraded output identified only 75% of the covered pixels within the ground observed perimeter polygons.The applications presented in this paper also evaluated the transition matrix between 2000 and 2010 of each of the three change detections,and predicted dynamic characteristics of grassland using the Markov model.The results showed that for the next decade,and even for a further ten years,the grassland will develop positively with a reduced trend of degradation and desertification.The research also indicated,it is credible to use remote sensing technology combined with the Markov model in analyzing the dynamic characteristics of grassland cover changes. |
中文关键词 | 马尔柯夫模型 ; 草原退化 ; 动态 ; 时空特征 |
英文关键词 | Markov model degradation dynamic temporal-spatial characteristic |
语种 | 中文 |
国家 | 中国 |
收录类别 | CSCD |
WOS类目 | AGRICULTURE MULTIDISCIPLINARY |
WOS研究方向 | Agriculture |
CSCD记录号 | CSCD:4655471 |
来源机构 | 北京林业大学 |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/227797 |
作者单位 | 1.北京林业大学, 北京 100714, 中国; 2.内蒙古民族大学, 通辽, 内蒙古 028043, 中国; 3.内蒙古草原勘察规划院, 呼和浩特, 内蒙古 010051, 中国 |
推荐引用方式 GB/T 7714 | 刘爱军,王保林,陈喜梅,等. 基于马尔柯夫模型的草原退化动态时空特征研究[J]. 北京林业大学,2012,21(5):229-236. |
APA | 刘爱军,王保林,陈喜梅,杨胜利,&郑淑华.(2012).基于马尔柯夫模型的草原退化动态时空特征研究.草业学报,21(5),229-236. |
MLA | 刘爱军,et al."基于马尔柯夫模型的草原退化动态时空特征研究".草业学报 21.5(2012):229-236. |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[刘爱军]的文章 |
[王保林]的文章 |
[陈喜梅]的文章 |
百度学术 |
百度学术中相似的文章 |
[刘爱军]的文章 |
[王保林]的文章 |
[陈喜梅]的文章 |
必应学术 |
必应学术中相似的文章 |
[刘爱军]的文章 |
[王保林]的文章 |
[陈喜梅]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。