Arid
干旱区稀疏芦苇盖度遥感信息提取
其他题名Extraction of vegetation fraction over the sparse reed in arid area
古丽.加帕尔; 陈曦; 马忠国
来源期刊干旱区地理
ISSN1000-6060
出版年2010
卷号33期号:6页码:988-996
中文摘要选择对角线法、之字型法、随机采用法及全采样法提取干旱区稀疏芦苇覆盖度, 对比分析不同采样方法获取参数的精度, 同时结合遥感影像, 采用线性混合像元分解模型、亚像元变密度分解模型、三波段最大梯度差模型提取样地覆盖度信息, 与地面实测覆盖度参量信息进行对比分析, 探讨适宜的干旱区植被盖度野外监测方法及遥感模型. 研究表明: 对角线法及之字型法所获取参数可以满足样地总体植被覆盖度参数精度要求; 地面验证结果表明: 2006年线性混合像元分解模型所提取的覆盖度精度最高, 为19.72%, 与地面实测值20%最为接近, 证明该模型可有效提取干旱区低覆盖度植被信息, 但端元的正确选取较难, 从而影响其运用; 亚像元分解模型预测值为 22.30%, 高于实际覆盖度值, 绝对误差为11.5%; 而三波段最大梯度差法模型与实测值相差最大, 绝对误差达到了-75%, 说明该模型对于极端干旱区稀疏植被敏感度低
英文摘要Taking the sparse reeds as the research object, sample plot of 30 m x 30 m were set, and separate it to thirty six small foursquare plots, vegetation fraction is derived by means of diagonal sampling, zigzag sampling, random sampling and full network sampling. The accuracies of different monitoring method mentioned above were paired for analysis. Three kinds of remote sensing inversion models,i. e. the linear spectral un-mixing model, subpixel un-mixing model, maximal gradient difference model, were used to derive vegetation fraction from Landsat TM remote sensing data, and the results are compared with the variables that measured in suit to determine the appropriate model for deriving the data of the coverage fraction of sparse desert reed in arid area. The results indicate as follows: Percent cover by means of diagonal and zigzag sampling could characterize the parameter of sparse reed in situ; It was also showed that linear un-mixing spectral model had a highest precision, the model predicted was 19. 72% matching well the field measured value 20%, being applicable for extract the coverage of sparse desert reed using remote sensing, but the selection of end member is so difficult, and affects the application of the model; The results by the sub-pixel un-mixing model showed that the predicted and absolvable errors are 22. 30% and 11.5%, separately, higher than that in situ measured value, high precision could be obtained based on finely model variable LAI or extinction coefficient for example, that needed to measure lots of vegetation variable; The results predicted by the maximal gradient difference model were underestimated, absolvable error is up to -75%, indicating that this model was not sensitivity for sparse vegetation in arid area. Limited by the arid environment, the sparse vegetation in arid area lacks of the spectrum characters of the vegetation at bands 560 nm,660 nm and 830 nm that were selected in maximal gradient difference model are sensitivity to the health vegetation. It is the main reason that the coverage parameters obtained from three bands maximal gradient difference model tend to be small
中文关键词塔里木河 ; 稀疏植被 ; 覆盖度 ; 适宜遥感模型
英文关键词Tarim River Basin sparse desert reed vegetation fraction remote sensing model
语种中文
国家中国
收录类别CSCD
WOS类目REMOTE SENSING
WOS研究方向Remote Sensing
CSCD记录号CSCD:4103253
来源机构中国科学院新疆生态与地理研究所
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/225038
作者单位中国科学院新疆生态与地理研究所, 乌鲁木齐, 新疆 830011, 中国
推荐引用方式
GB/T 7714
古丽.加帕尔,陈曦,马忠国. 干旱区稀疏芦苇盖度遥感信息提取[J]. 中国科学院新疆生态与地理研究所,2010,33(6):988-996.
APA 古丽.加帕尔,陈曦,&马忠国.(2010).干旱区稀疏芦苇盖度遥感信息提取.干旱区地理,33(6),988-996.
MLA 古丽.加帕尔,et al."干旱区稀疏芦苇盖度遥感信息提取".干旱区地理 33.6(2010):988-996.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[古丽.加帕尔]的文章
[陈曦]的文章
[马忠国]的文章
百度学术
百度学术中相似的文章
[古丽.加帕尔]的文章
[陈曦]的文章
[马忠国]的文章
必应学术
必应学术中相似的文章
[古丽.加帕尔]的文章
[陈曦]的文章
[马忠国]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。