Arid
高山寒区径流预报人工神经网络模型研究以乌鲁木齐河源区为例
其他题名Artificial neural network model of runoff prediction in high and cold mountainous regions: a case study in the source drainage area of Urumqi River
牟丽琴; 田富强; 胡和平
ISSN1003-1243
出版年2009
卷号28期号:1页码:62-67
中文摘要开展高山寒区径流预报对合理开发利用我国西北地区水资源有重要意义,由于恶劣自然环境造成的观测困难、干扰因素较多等问题,建立简单有效的径流预报模型是研究高山寒区水文规律的途径之一.近年来,人工神经网络技术作为一种简单有效的新方法被广泛应用于水文预报,但在冰川融雪为主的流域径流预报中的应用较少,本文以乌鲁木齐河源1号冰川区为研究对象,构建了高山寒区冰川作用区径流预报的前馈型人工神经网络模型(BP-ANN).通过1号冰川水文站各水文要素之间的相关分析初步确定网络的输入,以Nash效率系数最大等为目标函数,优选网络结构,并在此基础上对所优选网络结构的合理性及模型预见期进行了分析.
英文摘要Artificial neural network (ANN) model is intensively exploited for hydrological prediction. This is the case of predictions for snow/glacier melting which is of critical importance for sustainable utilization of water resources in the arid plain oases of Northwest China. In this paper, a parsimonious optimization ANN model based on back propagation algorithm is developed to simulate and predict runoff in high and cold mountainous regions. The source drainage area of the Urumqi River in Northwest China is selected for the case study. The network inputs, i. e. , the preceding daily positive accumulative temperature and previous runoff are determined by the correlative analysis, and the network structure is optimized with the maximum Nash coefficient as the objection function. The detailed study has also been conducted to test the effect of alternative inputs and forecasting periods on model performance which suggests that 3-3-1 network, i.e., 3 inputs (2 days preceding positive accumulative temperature and one day preceding runoff) and 3 hidden nodes, is the optimal network structure. The reasonability of optimized network structure and the effect of different forecast periods for model performance have also been studied, which would be helpful for runoff prediction in high and cold mountainous regious.
中文关键词水文学 ; 寒区水文 ; 径流预报 ; BP神经网络 ; 乌鲁木齐河源区
英文关键词hydrology hydrology in cold regions runoff prediction artificial neural network source drainage area of the Urumqi River
语种中文
国家中国
收录类别CSCD
WOS类目ENGINEERING MULTIDISCIPLINARY
WOS研究方向Engineering
CSCD记录号CSCD:3566503
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/224144
作者单位清华大学水利水电工程系, 水沙科学与水利水电工程国家重点实验室, 北京 100084, 中国
推荐引用方式
GB/T 7714
牟丽琴,田富强,胡和平. 高山寒区径流预报人工神经网络模型研究以乌鲁木齐河源区为例[J],2009,28(1):62-67.
APA 牟丽琴,田富强,&胡和平.(2009).高山寒区径流预报人工神经网络模型研究以乌鲁木齐河源区为例.,28(1),62-67.
MLA 牟丽琴,et al."高山寒区径流预报人工神经网络模型研究以乌鲁木齐河源区为例".28.1(2009):62-67.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[牟丽琴]的文章
[田富强]的文章
[胡和平]的文章
百度学术
百度学术中相似的文章
[牟丽琴]的文章
[田富强]的文章
[胡和平]的文章
必应学术
必应学术中相似的文章
[牟丽琴]的文章
[田富强]的文章
[胡和平]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。