Knowledge Resource Center for Ecological Environment in Arid Area
基于ANN技术和高光谱遥感的盐渍土盐分预测 | |
其他题名 | Salinity forecasting of saline soil based on ANN and hyperspectral remote sensing |
王静1; 刘湘南2; 黄方1; 唐吉龙3; 赵冷冰4 | |
ISSN | 1002-6819 |
出版年 | 2009 |
卷号 | 25期号:12页码:161-166 |
中文摘要 | 土壤盐渍化是干旱、半干旱农业区主要的土地退化问题,及时、精准、动态地监测盐渍土盐分,对于治理、防治盐渍上和进行农业可持续发展至关重要.以松嫩平原西部长岭县为例,利用盐渍土高光谱数据构建盐渍土盐分遥感预测模型.电导法测得土壤盐量,用ASD高光谱仪野外采集高光谱数据,利用光谱导数变换选择能够表征盐渍土盐分信息的最佳波段,即550、720、760、820和940 nm.通过比较3层和4层72种不同神经网络结构,最终选择5-6-1结构的3层神经网络预测盐渍土盐分(R~2=0.895,RAISE=0.089).与传统回归相比(R~2=0.81,.RMSE=0.25),运用高光谱数据与人工神经网络方法相结合,能够提高盐渍土的预测精度,说明人工神经网络在构建光谱反射率与土壤参数关系研究中具有突出优势. |
英文摘要 | Soil salinization is a major problem of land degradation in arid and semi-arid agricultural area. It is crucial to detect the salinity of saline soils accurately and dynamicly in time in order to prevent soil salinization and achieve sustainable development in agriculture.Taking Changling County western Songnen Plain,as the example,this paper constructed remote sensing predictive model of saline soils using hyperspectral data.The salinity was measured by electric conduction method,and hyperspectral data Was collected using ASD spectrometer.Derivative transformation of spectral reflectance was used to select best spectral bands which can represent the salinity of saline soils,e.g.550,720,760,820 and 940 nm. The best performance was achieved in the 5-6-1 architecture(R~2=0.895,RMSE=0.089)in 72different architectures in the three-and four-layer networks.Compared with traditional regression model (R~2=0.81,RMSE=0.25).the method combining hyperspectral data with artificial neural network can improve the predictive accuracy of saline soil.showing that artificial neural network is prominently advanced in establishing the relationships between spectral reflectance and soil parameters. |
中文关键词 | 神经网络 ; 遥感 ; 预测 ; 盐渍化 ; 高光谱 |
英文关键词 | neural network remote sensing forecasting salination hyperspectral |
语种 | 中文 |
国家 | 中国 |
收录类别 | CSCD |
WOS类目 | AGRICULTURE MULTIDISCIPLINARY |
WOS研究方向 | Agriculture |
CSCD记录号 | CSCD:3780891 |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/223952 |
作者单位 | 1.东北师范大学草地研究所, 植被生态教育部重点实验室, 长春, 吉林 130024, 中国; 2.中国地质大学(北京),信息工程学院, 北京 100083, 中国; 3.长春理工大学,光电工程学院, 长春, 吉林 130022, 中国; 4.吉林省林业调查规划院, 长春, 吉林 130022, 中国 |
推荐引用方式 GB/T 7714 | 王静,刘湘南,黄方,等. 基于ANN技术和高光谱遥感的盐渍土盐分预测[J],2009,25(12):161-166. |
APA | 王静,刘湘南,黄方,唐吉龙,&赵冷冰.(2009).基于ANN技术和高光谱遥感的盐渍土盐分预测.,25(12),161-166. |
MLA | 王静,et al."基于ANN技术和高光谱遥感的盐渍土盐分预测".25.12(2009):161-166. |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[王静]的文章 |
[刘湘南]的文章 |
[黄方]的文章 |
百度学术 |
百度学术中相似的文章 |
[王静]的文章 |
[刘湘南]的文章 |
[黄方]的文章 |
必应学术 |
必应学术中相似的文章 |
[王静]的文章 |
[刘湘南]的文章 |
[黄方]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。