Arid
北方农牧交错带草原产草量遥感监测模型
其他题名Models of grass production based on remote sensing monitoring in northern agro-grazing ecotone
杨秀春1; 徐斌1; 朱晓华2; 陶伟国1; 刘天科3
ISSN1000-0585
出版年2007
卷号26期号:2页码:213-221
中文摘要及时准确地了解草原产草量的时空配置状况,对于科学合理地利用、管理草地,保证畜牧业生产持续稳定发展、改善生态环境等具有重要的意义.本文利用2005年的MODIS数据和同期野外实测的668个样方产草量数据,分析了5种植被指数和草地生物量之间的相关关系.研究表明:(1)分区模型优于不分区模型,在分区基础上建模更能反映产草量的实际情况;(2)通过线性、非线性模型和BP神经网络模型的对比,得出BP神经网络模型在拟合精度上优于线性和非线性模型,是最适宜监测北方农牧交错带草原产草量的模型;(3)5种植被指数中,NDVI和SAVI与草地生物量之间的拟合精度最高,是研究区最适宜使用的植被指数.
英文摘要There is an ecotone connecting farming region and pasturing region for northern agro-grazing ecotone. Its ecological function consists of conserving water sources, checking the wind and fixing the shifting sand, purifying air and maintaining biodiversity. Grassland is not only one of the important ecosystems, but also a background vegetation. Over the past decades, human activities have caused great land cover changes, such as desertification, grassland degradation, and sandy. Therefore, accurate and timely monitoring grassland is of critical importance for utilizing and administering grassland, developing pasturage and improving ecological environment. Using MODIS remote sensing data for the year 2005 and the ground measured grass yield of the corresponding period, linear regression model, non-linear regression models and BP neural network model were respectively established, to express the regression relationships between ground truth data and vegetation indices in this paper. Some conclusions are drawn as follows: (1) Regional models are better than whole-area general models. It is reasonable for the four grassland areas, and the regional models can better describe grass production. (2) Models based on BP neural network are better than linear regression models and non-linear regression models in fitness accuracy. Its decision coefficient increases by more than 3% , and the highest is 6.92%. Moreover, by precision validating, we find its root mean square error and relative errors are smaller, the models precision increases by more than 2.5%, and the maxi-mum increases 23.22%. It is obvious that models based on BP neural network are most suitable for monitoring grass production of northern agrograzing ecotone, and it can meet the need of estimating of grass production in northern agro-grazing ecotone. (3) The suitable vegetation indices for monitoring grass production of northern agro-grazing ecotone are NDVI and SAVI. (4) With the accumulation of the temporal scales data, further studies may focus on input data for BP neural network model. For example, input data may a-dopt soil moisture index and temperature and precipitation, and so on, which may further increase precision of models, and approach actual grass production for monitoring results.
中文关键词北方农牧交错带 ; 产草量 ; 遥感 ; 监测
英文关键词MODIS northernagro-grazingecotonevgrassproduction MODIS remote sensing monitoring
语种中文
国家中国
收录类别CSCD
WOS类目GEOSCIENCES MULTIDISCIPLINARY
WOS研究方向Geology
CSCD记录号CSCD:2721260
来源机构中国科学院地理科学与资源研究所
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/220762
作者单位1.中国农业科学院农业资源与农业区划研究所, 北京 100081, 中国;
2.中国科学院地理科学与资源研究所, 北京 100101, 中国;
3.中国国土资源经济研究院, 北京 101149, 中国
推荐引用方式
GB/T 7714
杨秀春,徐斌,朱晓华,等. 北方农牧交错带草原产草量遥感监测模型[J]. 中国科学院地理科学与资源研究所,2007,26(2):213-221.
APA 杨秀春,徐斌,朱晓华,陶伟国,&刘天科.(2007).北方农牧交错带草原产草量遥感监测模型.,26(2),213-221.
MLA 杨秀春,et al."北方农牧交错带草原产草量遥感监测模型".26.2(2007):213-221.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[杨秀春]的文章
[徐斌]的文章
[朱晓华]的文章
百度学术
百度学术中相似的文章
[杨秀春]的文章
[徐斌]的文章
[朱晓华]的文章
必应学术
必应学术中相似的文章
[杨秀春]的文章
[徐斌]的文章
[朱晓华]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。