Arid
DOI10.3390/w11010085
Applicability of epsilon-Support Vector Machine and Artificial Neural Network for Flood Forecasting in Humid, Semi-Humid and Semi-Arid Basins in China
Bafitlhile, Thabo Michael; Li, Zhijia
通讯作者Bafitlhile, Thabo Michael
来源期刊WATER
ISSN2073-4441
出版年2019
卷号11期号:1
英文摘要The aim of this study was to develop hydrological models that can represent different geo-climatic system, namely: humid, semi-humid and semi-arid systems, in China. Humid and semi-humid areas suffer from frequent flood events, whereas semi-arid areas suffer from flash floods because of urbanization and climate change, which contribute to an increase in runoff. This study applied -Support Vector Machine (epsilon-SVM) and artificial neural network (ANN) for the simulation and forecasting streamflow of three different catchments. The Evolutionary Strategy (ES) optimization method was used to optimize the ANN and SVM sensitive parameters. The relative performance of the two models was compared, and the results indicate that both models performed well for humid and semi-humid systems, and SVM generally perform better than ANN in the streamflow simulation of all catchments.
英文关键词streamflow artificial neural network simulation forecasting support vector machine evolutionary strategy
类型Article
语种英语
国家Peoples R China
开放获取类型Green Submitted, gold
收录类别SCI-E
WOS记录号WOS:000459735100084
WOS关键词RIVER FLOW ; GENETIC ALGORITHM ; INFERENCE SYSTEM ; FLASH FLOODS ; MODEL ; RUNOFF ; PREDICTION ; REGRESSION ; SIMULATION ; SELECTION
WOS类目Environmental Sciences ; Water Resources
WOS研究方向Environmental Sciences & Ecology ; Water Resources
来源机构河海大学
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/219164
作者单位Hohai Univ, Coll Hydrol & Water Resources, Nanjing 210098, Jiangsu, Peoples R China
推荐引用方式
GB/T 7714
Bafitlhile, Thabo Michael,Li, Zhijia. Applicability of epsilon-Support Vector Machine and Artificial Neural Network for Flood Forecasting in Humid, Semi-Humid and Semi-Arid Basins in China[J]. 河海大学,2019,11(1).
APA Bafitlhile, Thabo Michael,&Li, Zhijia.(2019).Applicability of epsilon-Support Vector Machine and Artificial Neural Network for Flood Forecasting in Humid, Semi-Humid and Semi-Arid Basins in China.WATER,11(1).
MLA Bafitlhile, Thabo Michael,et al."Applicability of epsilon-Support Vector Machine and Artificial Neural Network for Flood Forecasting in Humid, Semi-Humid and Semi-Arid Basins in China".WATER 11.1(2019).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Bafitlhile, Thabo Michael]的文章
[Li, Zhijia]的文章
百度学术
百度学术中相似的文章
[Bafitlhile, Thabo Michael]的文章
[Li, Zhijia]的文章
必应学术
必应学术中相似的文章
[Bafitlhile, Thabo Michael]的文章
[Li, Zhijia]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。