Arid
DOI10.3390/s19112645
Transfer Learning Assisted Classification and Detection of Alzheimer's Disease Stages Using 3D MRI Scans
Maqsood, Muazzam1; Nazir, Faria2; Khan, Umair1; Aadil, Farhan1; Jamal, Habibullah3; Mehmood, Irfan4; Song, Oh-young5
通讯作者Song, Oh-young
来源期刊SENSORS
EISSN1424-8220
出版年2019
卷号19期号:11
英文摘要Alzheimer's disease effects human brain cells and results in dementia. The gradual deterioration of the brain cells results in disability of performing daily routine tasks. The treatment for this disease is still not mature enough. However, its early diagnosis may allow restraining the spread of disease. For early detection of Alzheimer's through brain Magnetic Resonance Imaging (MRI), an automated detection and classification system needs to be developed that can detect and classify the subject having dementia. These systems also need not only to classify dementia patients but to also identify the four progressing stages of dementia. The proposed system works on an efficient technique of utilizing transfer learning to classify the images by fine-tuning a pre-trained convolutional network, AlexNet. The architecture is trained and tested over the pre-processed segmented (Grey Matter, White Matter, and Cerebral Spinal Fluid) and un-segmented images for both binary and multi-class classification. The performance of the proposed system is evaluated over Open Access Series of Imaging Studies (OASIS) dataset. The algorithm showed promising results by giving the best overall accuracy of 92.85% for multi-class classification of un-segmented images.
英文关键词Alzheimer's Detection AlexNet ImageNet transfer learning contrast stretching K-Mean clustering
类型Article
语种英语
国家Pakistan ; England ; South Korea
开放获取类型Green Submitted, Green Published, gold
收录类别SCI-E
WOS记录号WOS:000472133300223
WOS关键词FEATURE-RANKING ; DIAGNOSIS ; IMAGES ; ADNI
WOS类目Chemistry, Analytical ; Engineering, Electrical & Electronic ; Instruments & Instrumentation
WOS研究方向Chemistry ; Engineering ; Instruments & Instrumentation
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/218842
作者单位1.COMSATS Univ Islamabad, Dept Comp Sci, Attock Campus, Attock 43600, Pakistan;
2.Capital Univ Sci & Technol, Dept Comp Sci, Islamabad 45750, Pakistan;
3.Ghulam Ishaq Khan Inst, Fac Engn Sci, Topi 23460, Pakistan;
4.Univ Bradford, Fac Engn & Informat, Dept Media Design & Technol, Bradford BD7 1DP, W Yorkshire, England;
5.Sejong Univ, Dept Software, Seoul 05006, South Korea
推荐引用方式
GB/T 7714
Maqsood, Muazzam,Nazir, Faria,Khan, Umair,et al. Transfer Learning Assisted Classification and Detection of Alzheimer's Disease Stages Using 3D MRI Scans[J],2019,19(11).
APA Maqsood, Muazzam.,Nazir, Faria.,Khan, Umair.,Aadil, Farhan.,Jamal, Habibullah.,...&Song, Oh-young.(2019).Transfer Learning Assisted Classification and Detection of Alzheimer's Disease Stages Using 3D MRI Scans.SENSORS,19(11).
MLA Maqsood, Muazzam,et al."Transfer Learning Assisted Classification and Detection of Alzheimer's Disease Stages Using 3D MRI Scans".SENSORS 19.11(2019).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Maqsood, Muazzam]的文章
[Nazir, Faria]的文章
[Khan, Umair]的文章
百度学术
百度学术中相似的文章
[Maqsood, Muazzam]的文章
[Nazir, Faria]的文章
[Khan, Umair]的文章
必应学术
必应学术中相似的文章
[Maqsood, Muazzam]的文章
[Nazir, Faria]的文章
[Khan, Umair]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。