Arid
DOI10.1038/s41598-019-40429-5
Using artificial neural networks to predict future dryland responses to human and climate disturbances
Buckland, C. E.1; Bailey, R. M.1; Thomas, D. S. G.1,2
通讯作者Buckland, C. E.
来源期刊SCIENTIFIC REPORTS
ISSN2045-2322
出版年2019
卷号9
英文摘要Land degradation and sediment remobilisation in dryland environments is considered to be a significant global environmental problem. Given the potential for currently stabilised dune systems to reactivate under climate change and increased anthropogenic pressures, identifying the role of external disturbances in driving geomorphic response is vitally important. We developed a novel approach, using artificial neural networks (ANNs) applied to time series of historical reactivation-deposition events from the Nebraska Sandhills, to determine the relationship between historic periods of sand deposition in semi-arid grasslands and external climatic conditions, land use pressures and wildfire occurrence. We show that both vegetation growth and sediment re-deposition episodes can be accurately estimated. Sensitivity testing of individual factors shows that localised forcings (overgrazing and wildfire) have a statistically significant impact when the climate is held at present-day conditions. However, the dominant effect is climate-induced drought. Our approach has great potential for estimating future landscape sensitivity to climate and land use scenarios across a wide range of potentially fragile dryland environments.
类型Article
语种英语
国家England ; South Africa
开放获取类型gold, Green Published
收录类别SCI-E
WOS记录号WOS:000460508600085
WOS关键词NEBRASKA SAND HILLS ; HOLOCENE DUNE ACTIVITY ; GREAT-PLAINS ; VEGETATION DYNAMICS ; LAND DEGRADATION ; SOUTHERN AFRICA ; VARIABILITY ; BLOWOUTS ; DROUGHT ; REACTIVATION
WOS类目Multidisciplinary Sciences
WOS研究方向Science & Technology - Other Topics
来源机构University of Oxford
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/218760
作者单位1.Univ Oxford, Sch Geog & Environm, Oxford OX1 3QY, England;
2.Univ Witwatersrand, Geog Archaeol & Environm Studies, Johannesburg, South Africa
推荐引用方式
GB/T 7714
Buckland, C. E.,Bailey, R. M.,Thomas, D. S. G.. Using artificial neural networks to predict future dryland responses to human and climate disturbances[J]. University of Oxford,2019,9.
APA Buckland, C. E.,Bailey, R. M.,&Thomas, D. S. G..(2019).Using artificial neural networks to predict future dryland responses to human and climate disturbances.SCIENTIFIC REPORTS,9.
MLA Buckland, C. E.,et al."Using artificial neural networks to predict future dryland responses to human and climate disturbances".SCIENTIFIC REPORTS 9(2019).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Buckland, C. E.]的文章
[Bailey, R. M.]的文章
[Thomas, D. S. G.]的文章
百度学术
百度学术中相似的文章
[Buckland, C. E.]的文章
[Bailey, R. M.]的文章
[Thomas, D. S. G.]的文章
必应学术
必应学术中相似的文章
[Buckland, C. E.]的文章
[Bailey, R. M.]的文章
[Thomas, D. S. G.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。