Arid
DOI10.1016/j.scitotenv.2018.12.101
Impact of grassland degradation on the distribution and bioavailability of soil silicon: Implications for the Si cycle in grasslands
Yang, Shilei1; Hao, Qian1; Liu, Hongyan2; Zhang, Xiaodong1; Yu, Changxun3; Yang, Xiaomin1; Xia, Shaopan1; Yang, Weihua1; Li, Jianwu4; Song, Zhaoliang1
通讯作者Song, Zhaoliang
来源期刊SCIENCE OF THE TOTAL ENVIRONMENT
ISSN0048-9697
EISSN1879-1026
出版年2019
卷号657页码:811-818
英文摘要Grassland ecosystems play an important role in the global terrestrial silicon (Si) cycle, and Si is a beneficial element and structural constituent for the growth of grasses. In previous decades, grasslands have been degraded to different degrees because of the drying climate and intense human disturbance. However, the impact of grassland degradation on the distribution and bioavailability of soil Si is largely unknown. Here, we investigated vegetation and soil conditions of 30 sites to characterize different degrees of degradation for grasslands in the agropastoral ecotone of northern China. We then explored the impact of grassland degradation on the distribution and bioavailability of soil Si, including total Si and four forms of noncrystalline Si in three horizons (0-10, 10-20 and 20-40 cm) of different soil profiles. The concentrations of noncrystalline Si in soil profiles significantly decreased with increasing degrees of degradation, being 7.35 +/- 0.88 mg g (1), 5.36 +/- 0.39 mg g (1), 3.81 +/- 0.37 mg g(-1) and 3.60 +/- 026 mg g(-1) in non-degraded, lightly degraded, moderately degraded and seriously degraded grasslands, respectively. Moreover, the storage of noncrystalline Si decreased from higher than 40 t ha(-1) to lower than 23 t ha(-1). The corresponding bioavailability of soil Si also generally decreased with grassland degradation. These processes may not only affect the Si pools and fluxes in soils but also influence the Si uptake in plants. We suggest that grassland degradation can significantly affect the global grassland Si cycle. Grassland management methods such as fertilizing and avoiding overgrazing can potentially double the content and storage of noncrystalline Si in soils, thereby enhancing the soil Si bioavailability by > 17%. (C) 2018 Elsevier B.V. All rights reserved.
英文关键词Silicon cycle Bioavailability Grassland degradation Agro-pastoral ecotone Northern China
类型Article
语种英语
国家Peoples R China ; Sweden
收录类别SCI-E
WOS记录号WOS:000455903400079
WOS关键词PHYTOLITH CARBON SEQUESTRATION ; INNER MONGOLIAN STEPPE ; ALPINE GRASSLAND ; CHINA GRASSLANDS ; SANDY GRASSLAND ; PLANT COMMUNITY ; ORGANIC-MATTER ; DESERTIFICATION ; VEGETATION ; NITROGEN
WOS类目Environmental Sciences
WOS研究方向Environmental Sciences & Ecology
来源机构北京大学
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/218647
作者单位1.Tianjin Univ, Inst Surface Earth Syst Sci, Tianjin 300072, Peoples R China;
2.Peking Univ, Coll Urban & Environm Sci, Beijing 100871, Peoples R China;
3.Linnaeus Univ, Dept Biol & Environm Sci, SE-39182 Kalmar, Sweden;
4.Zhejiang Agr & Forestry Univ, Sch Environm & Resource Sci, Linan 311300, Zhejiang, Peoples R China
推荐引用方式
GB/T 7714
Yang, Shilei,Hao, Qian,Liu, Hongyan,et al. Impact of grassland degradation on the distribution and bioavailability of soil silicon: Implications for the Si cycle in grasslands[J]. 北京大学,2019,657:811-818.
APA Yang, Shilei.,Hao, Qian.,Liu, Hongyan.,Zhang, Xiaodong.,Yu, Changxun.,...&Song, Zhaoliang.(2019).Impact of grassland degradation on the distribution and bioavailability of soil silicon: Implications for the Si cycle in grasslands.SCIENCE OF THE TOTAL ENVIRONMENT,657,811-818.
MLA Yang, Shilei,et al."Impact of grassland degradation on the distribution and bioavailability of soil silicon: Implications for the Si cycle in grasslands".SCIENCE OF THE TOTAL ENVIRONMENT 657(2019):811-818.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Yang, Shilei]的文章
[Hao, Qian]的文章
[Liu, Hongyan]的文章
百度学术
百度学术中相似的文章
[Yang, Shilei]的文章
[Hao, Qian]的文章
[Liu, Hongyan]的文章
必应学术
必应学术中相似的文章
[Yang, Shilei]的文章
[Hao, Qian]的文章
[Liu, Hongyan]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。