Arid
DOI10.3390/rs11182141
Regional Scale Dryland Vegetation Classification with an Integrated Lidar-Hyperspectral Approach
Dashti, Hamid1; Poley, Andrew2; Glenn, Nancy E.1; Ilangakoon, Nayani1; Spaete, Lucas3; Roberts, Dar4; Enterkine, Josh1; Flores, Alejandro N.1; Ustin, Susan L.5; Mitchell, Jessica J.6
通讯作者Dashti, Hamid
来源期刊REMOTE SENSING
EISSN2072-4292
出版年2019
卷号11期号:18
英文摘要The sparse canopy cover and large contribution of bright background soil, along with the heterogeneous vegetation types in close proximity, are common challenges for mapping dryland vegetation with remote sensing. Consequently, the results of a single classification algorithm or one type of sensor to characterize dryland vegetation typically show low accuracy and lack robustness. In our study, we improved classification accuracy in a semi-arid ecosystem based on the use of vegetation optical (hyperspectral) and structural (lidar) information combined with the environmental characteristics of the landscape. To accomplish this goal, we used both spectral angle mapper (SAM) and multiple endmember spectral mixture analysis (MESMA) for optical vegetation classification. Lidar-derived maximum vegetation height and delineated riparian zones were then used to modify the optical classification. Incorporating the lidar information into the classification scheme increased the overall accuracy from 60% to 89%. Canopy structure can have a strong influence on spectral variability and the lidar provided complementary information for SAM's sensitivity to shape but not magnitude of the spectra. Similar approaches to map large regions of drylands with low uncertainty may be readily implemented with unmixing algorithms applied to upcoming space-based imaging spectroscopy and lidar. This study advances our understanding of the nuances associated with mapping xeric and mesic regions, and highlights the importance of incorporating complementary algorithms and sensors to accurately characterize the heterogeneity of dryland ecosystems.
英文关键词drylands classification SAM MESMA LiDAR
类型Article
语种英语
国家USA
开放获取类型gold, Green Published
收录类别SCI-E
WOS记录号WOS:000489101500071
WOS关键词SPECTRAL MIXTURE ANALYSIS ; INCORPORATING ENDMEMBER VARIABILITY ; PLANT-SPECIES RICHNESS ; REMOTE-SENSING DATA ; IMAGING SPECTROSCOPY ; SEMIARID ECOSYSTEMS ; FUSION ; COVER ; LANDSCAPE ; DISCRIMINATION
WOS类目Environmental Sciences ; Geosciences, Multidisciplinary ; Remote Sensing ; Imaging Science & Photographic Technology
WOS研究方向Environmental Sciences & Ecology ; Geology ; Remote Sensing ; Imaging Science & Photographic Technology
来源机构University of California, Davis
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/218415
作者单位1.Boise State Univ, Dept Geosci, 1910 W Univ Dr, Boise, ID 83725 USA;
2.Michigan Tech Res Inst, 3600 Green Court,Suite 100, Ann Arbor, MI 48105 USA;
3.Minnesota Dept Nat Resources, 1201 US 2, Grand Rapids, MN 55744 USA;
4.Univ Calif Santa Barbara, Dept Geog, Santa Barbara, CA 93106 USA;
5.Univ Calif Davis, Dept Land Air & Water Resources, Davis, CA 93106 USA;
6.Univ Montana, Montana Nat Heritage Program, Missoula, MT 59812 USA
推荐引用方式
GB/T 7714
Dashti, Hamid,Poley, Andrew,Glenn, Nancy E.,et al. Regional Scale Dryland Vegetation Classification with an Integrated Lidar-Hyperspectral Approach[J]. University of California, Davis,2019,11(18).
APA Dashti, Hamid.,Poley, Andrew.,Glenn, Nancy E..,Ilangakoon, Nayani.,Spaete, Lucas.,...&Mitchell, Jessica J..(2019).Regional Scale Dryland Vegetation Classification with an Integrated Lidar-Hyperspectral Approach.REMOTE SENSING,11(18).
MLA Dashti, Hamid,et al."Regional Scale Dryland Vegetation Classification with an Integrated Lidar-Hyperspectral Approach".REMOTE SENSING 11.18(2019).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Dashti, Hamid]的文章
[Poley, Andrew]的文章
[Glenn, Nancy E.]的文章
百度学术
百度学术中相似的文章
[Dashti, Hamid]的文章
[Poley, Andrew]的文章
[Glenn, Nancy E.]的文章
必应学术
必应学术中相似的文章
[Dashti, Hamid]的文章
[Poley, Andrew]的文章
[Glenn, Nancy E.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。