Arid
DOI10.3390/rs11131520
Soil Texture Estimation Using Radar and Optical Data from Sentinel-1 and Sentinel-2
Bousbih, Safa1,2; Zribi, Mehrez1; Pelletier, Charlotte3; Gorrab, Azza2; Lili-Chabaane, Zohra2; Baghdadi, Nicolas4; Ben Aissa, Nadhira2; Mougenot, Bernard1
通讯作者Bousbih, Safa
来源期刊REMOTE SENSING
EISSN2072-4292
出版年2019
卷号11期号:13
英文摘要This paper discusses the combined use of remotely sensed optical and radar data for the estimation and mapping of soil texture. The study is based on Sentinel-1 (S-1) and Sentinel-2 (S-2) data acquired between July and early December 2017, on a semi-arid area about 3000 km(2) in central Tunisia. In addition to satellite acquisitions, texture measurement samples were taken in several agricultural fields, characterized by a large range of clay contents (between 13% and 60%). For the period between July and August, various optical indicators of clay content Short-Wave Infrared (SWIR) bands and soil indices) were tested over bare soils. Satellite moisture products, derived from combined S-1 and S-2 data, were also tested as an indicator of soil texture. Algorithms based on the support vector machine (SVM) and random forest (RF) methods are proposed for the classification and mapping of clay content and a three-fold cross-validation is used to evaluate both approaches. The classifications with the best performance are achieved using the soil moisture indicator derived from combined S-1 and S-2 data, with overall accuracy (OA) of 63% and 65% for the SVM and RF classifications, respectively.
英文关键词Sentinel-1 Sentinel-2 Soil Moisture Texture Clay SVM Random Forest
类型Article
语种英语
国家France ; Tunisia ; Australia
开放获取类型Green Published, gold
收录类别SCI-E
WOS记录号WOS:000477049000013
WOS关键词MOISTURE ESTIMATION ; TIME-SERIES ; CLAY ; REFLECTANCE ; SURFACE ; COLOR ; CALIBRATION ; PREDICTION ; RESOLUTION ; IMAGES
WOS类目Environmental Sciences ; Geosciences, Multidisciplinary ; Remote Sensing ; Imaging Science & Photographic Technology
WOS研究方向Environmental Sciences & Ecology ; Geology ; Remote Sensing ; Imaging Science & Photographic Technology
来源机构French National Research Institute for Sustainable Development
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/218390
作者单位1.INRA, CNES, IRD, CNRS,UPS,CESBIO, 18 Ave Edouard Belin, F-31401 Toulouse 9, France;
2.Univ Carthage, INAT, LR GREEN TEAM, 43 Ave Charles Nicolle, Tunis 1082, Tunisia;
3.Monash Univ, Fac Informat Technol, Melbourne, Vic 3800, Australia;
4.Univ Montpellier, UMR TETIS, IRSTEA, F-34093 Montpellier 5, France
推荐引用方式
GB/T 7714
Bousbih, Safa,Zribi, Mehrez,Pelletier, Charlotte,et al. Soil Texture Estimation Using Radar and Optical Data from Sentinel-1 and Sentinel-2[J]. French National Research Institute for Sustainable Development,2019,11(13).
APA Bousbih, Safa.,Zribi, Mehrez.,Pelletier, Charlotte.,Gorrab, Azza.,Lili-Chabaane, Zohra.,...&Mougenot, Bernard.(2019).Soil Texture Estimation Using Radar and Optical Data from Sentinel-1 and Sentinel-2.REMOTE SENSING,11(13).
MLA Bousbih, Safa,et al."Soil Texture Estimation Using Radar and Optical Data from Sentinel-1 and Sentinel-2".REMOTE SENSING 11.13(2019).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Bousbih, Safa]的文章
[Zribi, Mehrez]的文章
[Pelletier, Charlotte]的文章
百度学术
百度学术中相似的文章
[Bousbih, Safa]的文章
[Zribi, Mehrez]的文章
[Pelletier, Charlotte]的文章
必应学术
必应学术中相似的文章
[Bousbih, Safa]的文章
[Zribi, Mehrez]的文章
[Pelletier, Charlotte]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。