Arid
DOI10.3390/rs11111327
Comparison of Three Algorithms for the Evaluation of TanDEM-X Data for Gully Detection in Krumhuk Farm (Namibia)
Orti, Miguel Vallejo1,2; Negussie, Kaleb1,3; Corral-Pazos-de-Provens, Eva4; Hoefle, Bernhard2; Bubenzer, Olaf5,6
通讯作者Orti, Miguel Vallejo
来源期刊REMOTE SENSING
EISSN2072-4292
出版年2019
卷号11期号:11
英文摘要Namibia is a dry and low populated country highly dependent on agriculture, with many areas experiencing land degradation accelerated by climate change. One of the most obvious and damaging manifestations of these degradation processes are gullies, which lead to great economic losses while accelerating desertification. The development of standardized methods to detect and monitor the evolution of gully-affected areas is crucial to plan prevention and remediation strategies. With the aim of developing solutions applicable at a regional or even national scale, fully automated satellite-based remote sensing methods are explored in this research. For this purpose, three different algorithms are applied to a Digital Elevation Model (DEM) generated from the TanDEM-X satellite mission to extract gullies from their geomorphological characteristics: (i) Inverted Morphological Reconstruction (IMR), (ii) Smoothing Moving Polynomial Fitting (SMPF) and (iii) Multi Profile Curvature Analysis (MPCA). These algorithms are adapted or newly developed to identify gullies at the pixel level (12 m) in our study site in the Krumhuk Farm. The results of the three methods are benchmarked with ground truth; specific scenarios are observed to better understand the performance of each method. Results show that MPCA is the most reliable method to identify gullies, achieving an overall accuracy of approximately 0.80 with values of Cohen Kappa close to 0.35. The performance of these parameters improves when detecting large gullies (>30 m width and >3 m depth) achieving Total Accuracies (TA) near to 0.90, Cohen Kappa above 0.5, and User Accuracy (UA) and Producer Accuracy (PA) over 0.50 for the gully class. Small gullies (<12 m wide and <2 m deep) are usually neglected in the classification results due to spatial resolution constraints within the input DEM. In addition, IMR generates accurate results for UA in the gully class (0.94). The MPCA method developed here is a promising tool for the identification of large gullies considering extensive study areas. Nevertheless, further development is needed to improve the accuracy of the algorithms, as well as to derive geomorphological gully parameters (e.g., perimeter and volume) instead of pixel-level classification.
英文关键词Digital Elevation Model gully erosion Morphological Reconstruction Namibia polynomial surface fitting terrain curvature TanDEM-X
类型Article
语种英语
国家Namibia ; Germany ; Spain
开放获取类型gold, Green Published
收录类别SCI-E
WOS记录号WOS:000472648000070
WOS关键词LIDAR DATA ; EROSION ; ACCURACY ; PHOTOGRAMMETRY ; CATCHMENT ; GEOMETRY ; MODEL
WOS类目Environmental Sciences ; Geosciences, Multidisciplinary ; Remote Sensing ; Imaging Science & Photographic Technology
WOS研究方向Environmental Sciences & Ecology ; Geology ; Remote Sensing ; Imaging Science & Photographic Technology
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/218378
作者单位1.Namibia Univ Sci & Technol, Dept Geospatial Sci & Technol, Windhoek 13388, Namibia;
2.Heidelberg Univ, 3D Geospatial Data Proc Grp, Inst Geog, D-69120 Heidelberg, Germany;
3.Namibia Univ Sci & Technol, ILMI, Windhoek 13388, Namibia;
4.Univ Huelva, Dept Ciencias Agroforestales, Huelva 21819, Spain;
5.Heidelberg Univ, Geomorphol & Soil Sci, Inst Geog, D-69120 Heidelberg, Germany;
6.Heidelberg Univ, Heidelberg Ctr Environm, D-69120 Heidelberg, Germany
推荐引用方式
GB/T 7714
Orti, Miguel Vallejo,Negussie, Kaleb,Corral-Pazos-de-Provens, Eva,et al. Comparison of Three Algorithms for the Evaluation of TanDEM-X Data for Gully Detection in Krumhuk Farm (Namibia)[J],2019,11(11).
APA Orti, Miguel Vallejo,Negussie, Kaleb,Corral-Pazos-de-Provens, Eva,Hoefle, Bernhard,&Bubenzer, Olaf.(2019).Comparison of Three Algorithms for the Evaluation of TanDEM-X Data for Gully Detection in Krumhuk Farm (Namibia).REMOTE SENSING,11(11).
MLA Orti, Miguel Vallejo,et al."Comparison of Three Algorithms for the Evaluation of TanDEM-X Data for Gully Detection in Krumhuk Farm (Namibia)".REMOTE SENSING 11.11(2019).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Orti, Miguel Vallejo]的文章
[Negussie, Kaleb]的文章
[Corral-Pazos-de-Provens, Eva]的文章
百度学术
百度学术中相似的文章
[Orti, Miguel Vallejo]的文章
[Negussie, Kaleb]的文章
[Corral-Pazos-de-Provens, Eva]的文章
必应学术
必应学术中相似的文章
[Orti, Miguel Vallejo]的文章
[Negussie, Kaleb]的文章
[Corral-Pazos-de-Provens, Eva]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。