Arid
DOI10.3390/rs11091014
Detecting Land Degradation in Eastern China Grasslands with Time Series Segmentation and Residual Trend analysis (TSS-RESTREND) and GIMMS NDVI3g Data
Liu, Caixia1,2,3; Melack, John3; Tian, Ye1,2; Huang, Huabing1,2; Jiang, Jinxiong4; Fu, Xiao5; Zhang, Zhouai6,7
通讯作者Liu, Caixia
来源期刊REMOTE SENSING
EISSN2072-4292
出版年2019
卷号11期号:9
英文摘要Grassland ecosystems in China have experienced degradation caused by natural processes and human activities. Time series segmentation and residual trend analysis (TSS-RESTREND) was applied to grasslands in eastern China. TSS-RESTREND is an extended version of the residual trend (RESTREND) methodology. It considers breakpoint detection to identify pixels with abrupt ecosystem changes which violate the assumptions of RESTREND. With TSS-RESTREND, in Xilingol (111 degrees 59-120 degrees 00E and 42 degrees 32-46 degrees 41E) and Hulunbuir (115 degrees 30-122 degrees E and 47 degrees 10-51 degrees 23N) grassland, 6% and 3% of the area experienced a decrease in greenness between 1984 and 2009, 80% and 73% had no significant change, 5% and 3% increased in greenness, and 9% and 21% were undetermined, respectively. RESTREND may underestimate the greening trend in Xilingol, but both TSS-RESTREND and RESTREND revealed no significant differences in Hulunbuir. The proposed TSS-RESTREND methodology captured both the time and magnitude of vegetation changes.
英文关键词grassland NDVI RESTREND BFAST land degradation
类型Article
语种英语
国家Peoples R China ; USA
开放获取类型gold, Green Submitted
收录类别SCI-E
WOS记录号WOS:000469763600022
WOS关键词INNER-MONGOLIA ; ABOVEGROUND BIOMASS ; VEGETATION TRENDS ; CLIMATE IMPACT ; COVER CHANGE ; AVHRR ; ECOSYSTEM ; DESERTIFICATION ; DYNAMICS ; DRYLANDS
WOS类目Environmental Sciences ; Geosciences, Multidisciplinary ; Remote Sensing ; Imaging Science & Photographic Technology
WOS研究方向Environmental Sciences & Ecology ; Geology ; Remote Sensing ; Imaging Science & Photographic Technology
来源机构北京师范大学
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/218363
作者单位1.Chinese Acad Sci, State Key Lab Remote Sensing Sci, Inst Remote Sensing & Digital Earth, Beijing 100101, Peoples R China;
2.Beijing Normal Univ, Inst Remote Sensing & Digital Earth, Beijing 100101, Peoples R China;
3.Univ Calif Santa Barbara, Bren Sch Environm Sci & Management, Santa Barbara, CA 93106 USA;
4.State Key Lab Space Ground Integrated Informat Te, Beijing 100029, Peoples R China;
5.Chinese Acad Sci, State Key Lab Urban & Reg Ecol, Res Ctr Ecoenvironm Sci, Beijing 100085, Peoples R China;
6.Shenhua Baorixile Energy Co Ltd, Hulunbuir 021000, Peoples R China;
7.State Key Lab Water Resource Protect & Utilizat C, Beijing 100011, Peoples R China
推荐引用方式
GB/T 7714
Liu, Caixia,Melack, John,Tian, Ye,et al. Detecting Land Degradation in Eastern China Grasslands with Time Series Segmentation and Residual Trend analysis (TSS-RESTREND) and GIMMS NDVI3g Data[J]. 北京师范大学,2019,11(9).
APA Liu, Caixia.,Melack, John.,Tian, Ye.,Huang, Huabing.,Jiang, Jinxiong.,...&Zhang, Zhouai.(2019).Detecting Land Degradation in Eastern China Grasslands with Time Series Segmentation and Residual Trend analysis (TSS-RESTREND) and GIMMS NDVI3g Data.REMOTE SENSING,11(9).
MLA Liu, Caixia,et al."Detecting Land Degradation in Eastern China Grasslands with Time Series Segmentation and Residual Trend analysis (TSS-RESTREND) and GIMMS NDVI3g Data".REMOTE SENSING 11.9(2019).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liu, Caixia]的文章
[Melack, John]的文章
[Tian, Ye]的文章
百度学术
百度学术中相似的文章
[Liu, Caixia]的文章
[Melack, John]的文章
[Tian, Ye]的文章
必应学术
必应学术中相似的文章
[Liu, Caixia]的文章
[Melack, John]的文章
[Tian, Ye]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。