Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.3390/rs11020155 |
Estimating Land Surface Temperature from Landsat-8 Data using the NOAA JPSS Enterprise Algorithm | |
Meng, Xiangchen1,2; Cheng, Jie1,2; Zhao, Shaohua3; Liu, Sihan3; Yao, Yunjun1,2 | |
通讯作者 | Cheng, Jie |
来源期刊 | REMOTE SENSING
![]() |
EISSN | 2072-4292 |
出版年 | 2019 |
卷号 | 11期号:2 |
英文摘要 | Land surface temperature (LST) is one of the key parameters in hydrology, meteorology, and the surface energy balance. The National Oceanic and Atmospheric Administration (NOAA) Joint Polar Satellite System (JPSS) Enterprise algorithm is adapted to Landsat-8 data to obtain the estimate of LST. The coefficients of the Enterprise algorithm were obtained by linear regression using the analog data produced by comprehensive radiative transfer modeling. The performance of the Enterprise algorithm was first tested by simulation data and then validated by ground measurements. In addition, the accuracy of the Enterprise algorithm was compared to the generalized split-window algorithm and the split-window algorithm of Sobrino et al. (1996). The validation results indicate the Enterprise algorithm has a comparable accuracy to the other two split-window algorithms. The biases (root mean square errors) of the Enterprise algorithm were 1.38 (3.22), 1.01 (2.32), 1.99 (3.49), 2.53 (3.46), and -0.15 K (1.11 K) at the SURFRAD, HiWATER_A, HiWATER_B, HiWATER_C sites and BanGe site, respectively, whereas those values were 1.39 (3.20), 1.0 (2.30), 1.93 (3.48), 2.53 (3.35), and -0.35 K (1.16 K) for the generalized split-window algorithm, 1.45 (3.39), 1.08 (2.41), 2.16 (3.67), 2.52 (3.58), and 0.02 K (1.12 K) for the split-window algorithm of Sobrino, respectively. This study provides an alternative method to estimate LST from Landsat-8 data. |
英文关键词 | Landsat8 Enterprise LST SURFRAD HiWATER TIPEX-III |
类型 | Article |
语种 | 英语 |
国家 | Peoples R China |
开放获取类型 | gold |
收录类别 | SCI-E |
WOS记录号 | WOS:000457939400052 |
WOS关键词 | SPLIT-WINDOW ALGORITHM ; RADIATION BUDGET NETWORK ; FOREST-FIRE RISK ; EMISSIVITY SEPARATION ; ARID AREA ; RETRIEVAL ; SATELLITE ; VALIDATION ; DERIVATION ; SURFRAD |
WOS类目 | Environmental Sciences ; Geosciences, Multidisciplinary ; Remote Sensing ; Imaging Science & Photographic Technology |
WOS研究方向 | Environmental Sciences & Ecology ; Geology ; Remote Sensing ; Imaging Science & Photographic Technology |
来源机构 | 北京师范大学 |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/218332 |
作者单位 | 1.Beijing Normal Univ, Fac Geog Sci, State Key Lab Remote Sensing Sci, Beijing 100875, Peoples R China; 2.Beijing Normal Univ, Inst Remote Sensing Sci & Engn, Fac Geog Sci, Beijing 100875, Peoples R China; 3.Minist Environm Protect, Satellite Environm Ctr, Beijing 100094, Peoples R China |
推荐引用方式 GB/T 7714 | Meng, Xiangchen,Cheng, Jie,Zhao, Shaohua,et al. Estimating Land Surface Temperature from Landsat-8 Data using the NOAA JPSS Enterprise Algorithm[J]. 北京师范大学,2019,11(2). |
APA | Meng, Xiangchen,Cheng, Jie,Zhao, Shaohua,Liu, Sihan,&Yao, Yunjun.(2019).Estimating Land Surface Temperature from Landsat-8 Data using the NOAA JPSS Enterprise Algorithm.REMOTE SENSING,11(2). |
MLA | Meng, Xiangchen,et al."Estimating Land Surface Temperature from Landsat-8 Data using the NOAA JPSS Enterprise Algorithm".REMOTE SENSING 11.2(2019). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。