Arid
DOI10.3390/rs11020155
Estimating Land Surface Temperature from Landsat-8 Data using the NOAA JPSS Enterprise Algorithm
Meng, Xiangchen1,2; Cheng, Jie1,2; Zhao, Shaohua3; Liu, Sihan3; Yao, Yunjun1,2
通讯作者Cheng, Jie
来源期刊REMOTE SENSING
EISSN2072-4292
出版年2019
卷号11期号:2
英文摘要Land surface temperature (LST) is one of the key parameters in hydrology, meteorology, and the surface energy balance. The National Oceanic and Atmospheric Administration (NOAA) Joint Polar Satellite System (JPSS) Enterprise algorithm is adapted to Landsat-8 data to obtain the estimate of LST. The coefficients of the Enterprise algorithm were obtained by linear regression using the analog data produced by comprehensive radiative transfer modeling. The performance of the Enterprise algorithm was first tested by simulation data and then validated by ground measurements. In addition, the accuracy of the Enterprise algorithm was compared to the generalized split-window algorithm and the split-window algorithm of Sobrino et al. (1996). The validation results indicate the Enterprise algorithm has a comparable accuracy to the other two split-window algorithms. The biases (root mean square errors) of the Enterprise algorithm were 1.38 (3.22), 1.01 (2.32), 1.99 (3.49), 2.53 (3.46), and -0.15 K (1.11 K) at the SURFRAD, HiWATER_A, HiWATER_B, HiWATER_C sites and BanGe site, respectively, whereas those values were 1.39 (3.20), 1.0 (2.30), 1.93 (3.48), 2.53 (3.35), and -0.35 K (1.16 K) for the generalized split-window algorithm, 1.45 (3.39), 1.08 (2.41), 2.16 (3.67), 2.52 (3.58), and 0.02 K (1.12 K) for the split-window algorithm of Sobrino, respectively. This study provides an alternative method to estimate LST from Landsat-8 data.
英文关键词Landsat8 Enterprise LST SURFRAD HiWATER TIPEX-III
类型Article
语种英语
国家Peoples R China
开放获取类型gold
收录类别SCI-E
WOS记录号WOS:000457939400052
WOS关键词SPLIT-WINDOW ALGORITHM ; RADIATION BUDGET NETWORK ; FOREST-FIRE RISK ; EMISSIVITY SEPARATION ; ARID AREA ; RETRIEVAL ; SATELLITE ; VALIDATION ; DERIVATION ; SURFRAD
WOS类目Environmental Sciences ; Geosciences, Multidisciplinary ; Remote Sensing ; Imaging Science & Photographic Technology
WOS研究方向Environmental Sciences & Ecology ; Geology ; Remote Sensing ; Imaging Science & Photographic Technology
来源机构北京师范大学
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/218332
作者单位1.Beijing Normal Univ, Fac Geog Sci, State Key Lab Remote Sensing Sci, Beijing 100875, Peoples R China;
2.Beijing Normal Univ, Inst Remote Sensing Sci & Engn, Fac Geog Sci, Beijing 100875, Peoples R China;
3.Minist Environm Protect, Satellite Environm Ctr, Beijing 100094, Peoples R China
推荐引用方式
GB/T 7714
Meng, Xiangchen,Cheng, Jie,Zhao, Shaohua,et al. Estimating Land Surface Temperature from Landsat-8 Data using the NOAA JPSS Enterprise Algorithm[J]. 北京师范大学,2019,11(2).
APA Meng, Xiangchen,Cheng, Jie,Zhao, Shaohua,Liu, Sihan,&Yao, Yunjun.(2019).Estimating Land Surface Temperature from Landsat-8 Data using the NOAA JPSS Enterprise Algorithm.REMOTE SENSING,11(2).
MLA Meng, Xiangchen,et al."Estimating Land Surface Temperature from Landsat-8 Data using the NOAA JPSS Enterprise Algorithm".REMOTE SENSING 11.2(2019).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Meng, Xiangchen]的文章
[Cheng, Jie]的文章
[Zhao, Shaohua]的文章
百度学术
百度学术中相似的文章
[Meng, Xiangchen]的文章
[Cheng, Jie]的文章
[Zhao, Shaohua]的文章
必应学术
必应学术中相似的文章
[Meng, Xiangchen]的文章
[Cheng, Jie]的文章
[Zhao, Shaohua]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。