Arid
DOI10.1098/rsif.2019.0183
Optimizing colour for camouflage and visibility using deep learning: the effects of the environment and the observer's visual system
Fennell, J. G.1; Talas, L.1; Baddeley, R. J.1; Cuthill, I. C.2; Scott-Samuel, N. E.1
通讯作者Fennell, J. G.
来源期刊JOURNAL OF THE ROYAL SOCIETY INTERFACE
ISSN1742-5689
EISSN1742-5662
出版年2019
卷号16期号:154
英文摘要Avoiding detection can provide significant survival advantages for prey, predators, or the military; conversely, maximizing visibility would be useful for signalling. One simple determinant of detectability is an animal's colour relative to its environment. But identifying the optimal colour to minimize (or maximize) detectability in a given natural environment is complex, partly because of the nature of the perceptual space. Here for the first time, using image processing techniques to embed targets into realistic environments together with psychophysics to estimate detectability and deep neural networks to interpolate between sampled colours, we propose a method to identify the optimal colour that either minimizes or maximizes visibility. We apply our approach in two natural environments (temperate forest and semi-arid desert) and show how a comparatively small number of samples can be used to predict robustly the most and least effective colours for camouflage. To illustrate how our approach can be generalized to other non-human visual systems, we also identify the optimum colours for concealment and visibility when viewed by simulated red-green colour-blind dichromats, typical for non-human mammals. Contrasting the results from these visual systems sheds light on why some predators seem, at least to humans, to have colouring that would appear detrimental to ambush hunting. We found that for simulated dichromatic observers, colour strongly affected detection time for both environments. In contrast, trichromatic observers were more effective at breaking camouflage.
英文关键词camouflage conspicuity dichromacy trichromacy deep learning visual perception
类型Article
语种英语
国家England
开放获取类型hybrid, Green Published, Green Submitted
收录类别SCI-E
WOS记录号WOS:000470117900021
WOS关键词VISION ; EVOLUTION
WOS类目Multidisciplinary Sciences
WOS研究方向Science & Technology - Other Topics
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/217383
作者单位1.Univ Bristol, Sch Psychol Sci, 12a Priory Rd, Bristol BS8 1TU, Avon, England;
2.Univ Bristol, Sch Biol Sci, Bristol Life Sci Bldg,24 Tyndall Ave, Bristol BS8 1TQ, Avon, England
推荐引用方式
GB/T 7714
Fennell, J. G.,Talas, L.,Baddeley, R. J.,et al. Optimizing colour for camouflage and visibility using deep learning: the effects of the environment and the observer's visual system[J],2019,16(154).
APA Fennell, J. G.,Talas, L.,Baddeley, R. J.,Cuthill, I. C.,&Scott-Samuel, N. E..(2019).Optimizing colour for camouflage and visibility using deep learning: the effects of the environment and the observer's visual system.JOURNAL OF THE ROYAL SOCIETY INTERFACE,16(154).
MLA Fennell, J. G.,et al."Optimizing colour for camouflage and visibility using deep learning: the effects of the environment and the observer's visual system".JOURNAL OF THE ROYAL SOCIETY INTERFACE 16.154(2019).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Fennell, J. G.]的文章
[Talas, L.]的文章
[Baddeley, R. J.]的文章
百度学术
百度学术中相似的文章
[Fennell, J. G.]的文章
[Talas, L.]的文章
[Baddeley, R. J.]的文章
必应学术
必应学术中相似的文章
[Fennell, J. G.]的文章
[Talas, L.]的文章
[Baddeley, R. J.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。