Arid
DOI10.1061/(ASCE)HE.1943-5584.0001825
Multiparameter Regression Modeling for Improving Quality of Measured Rainfall and Runoff Data in Densely Instrumented Watersheds
Bitew, Menberu Meles1; Goodrich, David C.1; Demaria, Eleonora1; Heilman, Philip1; Nichols, Mary1; Levick, Lainie2; Unkrich, Carl L.1; Kautz, Mark1
通讯作者Bitew, Menberu Meles
来源期刊JOURNAL OF HYDROLOGIC ENGINEERING
ISSN1084-0699
EISSN1943-5584
出版年2019
卷号24期号:10
英文摘要The Walnut Gulch Experimental Watershed is a semi-arid experimental watershed and long-term agro-ecosystem research (LTAR) site managed by the USDA-Agricultural Research Services (ARS) Southwest Watershed Research Center for which high-resolution, long-term hydroclimatic data are available across its 149-km2 drainage area. Quality control and quality assurance of the massive data set are a major challenge. We present the analysis of 50 years of data sets to develop a strategy to identify errors and inconsistencies in historical rainfall and runoff databases. A multiple regression model was developed to relate rainfall, watershed properties, and the antecedent conditions to runoff characteristics in 12 subwatersheds ranging in area from 0.002-94 km2. A regression model was developed based on 18 predictor variables, which produced predicted runoff with correlation coefficients ranging from 0.4-0.94 and Nash efficiency coefficients up to 0.76. The model predicted 92% of runoff events and 86% of no-runoff events. The modeling approach is a complement to existing quality assurance and quality control (QAQC) procedures and provides a specific method for ensuring that rainfall and runoff data in the USDA-ARS Walnut Gulch Experimental Watershed database are consistent and contain minimal error. The model has the potential for making runoff predictions in similar hydroclimatic environments with available high-resolution observations.
英文关键词Walnut gulch Rainfall-runoff Multiparameter regression model Quality assurance and quality control (QAQC) Database Uncertainty Semiarid
类型Article
语种英语
国家USA
收录类别SCI-E
WOS记录号WOS:000481578800006
WOS关键词WALNUT GULCH ; SOIL-MOISTURE ; NETWORK ; CATCHMENT ; SCALE ; OBSERVATORIES ; BASIN ; FLOW
WOS类目Engineering, Civil ; Environmental Sciences ; Water Resources
WOS研究方向Engineering ; Environmental Sciences & Ecology ; Water Resources
来源机构University of Arizona
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/217116
作者单位1.USDA ARS, Southwestern Watershed Res Ctr, Tucson, AZ 85719 USA;
2.Univ Arizona, Sch Nat Resources & Environm, Tucson, AZ 85721 USA
推荐引用方式
GB/T 7714
Bitew, Menberu Meles,Goodrich, David C.,Demaria, Eleonora,et al. Multiparameter Regression Modeling for Improving Quality of Measured Rainfall and Runoff Data in Densely Instrumented Watersheds[J]. University of Arizona,2019,24(10).
APA Bitew, Menberu Meles.,Goodrich, David C..,Demaria, Eleonora.,Heilman, Philip.,Nichols, Mary.,...&Kautz, Mark.(2019).Multiparameter Regression Modeling for Improving Quality of Measured Rainfall and Runoff Data in Densely Instrumented Watersheds.JOURNAL OF HYDROLOGIC ENGINEERING,24(10).
MLA Bitew, Menberu Meles,et al."Multiparameter Regression Modeling for Improving Quality of Measured Rainfall and Runoff Data in Densely Instrumented Watersheds".JOURNAL OF HYDROLOGIC ENGINEERING 24.10(2019).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Bitew, Menberu Meles]的文章
[Goodrich, David C.]的文章
[Demaria, Eleonora]的文章
百度学术
百度学术中相似的文章
[Bitew, Menberu Meles]的文章
[Goodrich, David C.]的文章
[Demaria, Eleonora]的文章
必应学术
必应学术中相似的文章
[Bitew, Menberu Meles]的文章
[Goodrich, David C.]的文章
[Demaria, Eleonora]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。