Arid
DOI10.1002/ima.22304
An improved machine learning technique based on downsized KPCA for Alzheimer's disease classification
Neffati, Syrine1; Ben Abdellafou, Khaoula2; Jaffel, Ines1; Taouali, Okba1; Bouzrara, Kais1
通讯作者Taouali, Okba
来源期刊INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY
ISSN0899-9457
EISSN1098-1098
出版年2019
卷号29期号:2页码:121-131
英文摘要Alzheimer's disease (AD), a neurodegenerative disorder, is a very serious illness that cannot be cured, but the early diagnosis allows precautionary measures to be taken. The current used methods to detect Alzheimer's disease are based on tests of cognitive impairment, which does not provide an exact diagnosis before the patient passes a moderate stage of AD. In this article, a novel classifier of brain magnetic resonance images (MRI) based on the new downsized kernel principal component analysis (DKPCA) and multiclass support vector machine (SVM) is proposed. The suggested scheme classifies AD MRIs. First, a multiobjective optimization technique is used to determine the optimal parameter of the kernel function in order to ensure good classification results and to minimize the number of retained principle components simultaneously. The optimal parameter is used to build the optimized DKPCA model. Second, DKPCA is applied to normalized features. Downsized features are then fed to the classifier to output the prediction. To validate the effectiveness of the proposed method, DKPCA was tested using synthetic data to demonstrate its efficiency on dimensionality reduction, then the DKPCA based technique was tested on the OASIS MRI database and the results were satisfactory compared to conventional approaches.
英文关键词Alzheimer's disease downsized kernel principal component analysis medical image diagnosis mksvm multiobjective optimization
类型Article
语种英语
国家Tunisia
收录类别SCI-E
WOS记录号WOS:000467272300003
WOS类目Engineering, Electrical & Electronic ; Optics ; Imaging Science & Photographic Technology
WOS研究方向Engineering ; Optics ; Imaging Science & Photographic Technology
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/216461
作者单位1.Univ Monastir, Natl Engn Sch Monastir, Dept Elect, Monastir, Tunisia;
2.Univ Sousse, Higher Inst Comp Sci & Commun Technol ISITCom, MARS Modeling Automated Reasoning Syst Res Lab LR, Sousse, Tunisia
推荐引用方式
GB/T 7714
Neffati, Syrine,Ben Abdellafou, Khaoula,Jaffel, Ines,et al. An improved machine learning technique based on downsized KPCA for Alzheimer's disease classification[J],2019,29(2):121-131.
APA Neffati, Syrine,Ben Abdellafou, Khaoula,Jaffel, Ines,Taouali, Okba,&Bouzrara, Kais.(2019).An improved machine learning technique based on downsized KPCA for Alzheimer's disease classification.INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY,29(2),121-131.
MLA Neffati, Syrine,et al."An improved machine learning technique based on downsized KPCA for Alzheimer's disease classification".INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY 29.2(2019):121-131.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Neffati, Syrine]的文章
[Ben Abdellafou, Khaoula]的文章
[Jaffel, Ines]的文章
百度学术
百度学术中相似的文章
[Neffati, Syrine]的文章
[Ben Abdellafou, Khaoula]的文章
[Jaffel, Ines]的文章
必应学术
必应学术中相似的文章
[Neffati, Syrine]的文章
[Ben Abdellafou, Khaoula]的文章
[Jaffel, Ines]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。