Arid
DOI10.1080/13682199.2018.1545412
A fully automatic methodology for MRI brain tumour detection and segmentation
Kebir, S. Tchoketch1; Mekaoui, S.1; Bouhedda, M.2
通讯作者Kebir, S. Tchoketch
来源期刊IMAGING SCIENCE JOURNAL
ISSN1368-2199
EISSN1743-131X
出版年2019
卷号67期号:1页码:42-62
英文摘要In this paper, a complete and fully automatic MRI brain tumour detection and segmentation methodology is presented as an efficient clinical-aided tool using Gaussian mixture model, Fuzzy C-Means, active contour, wavelet transform and entropy segmentation methods. The proposed algorithm is based on two main parts: the skull stripping and tumour auto-detection and segmentation. The first part was evaluated using IBSR, LPBA40 and OASIS databases, and the obtained results show that our proposed method outclasses the best popular algorithms of brain extraction with scores of 0.913, 0.954 and 0.957 for the Jaccard index, Dice coefficient and sensitivity, respectively. The second part has been evaluated using BRATS database; this methodology has achieved an accuracy of 69% of true detection, and a false detection is around 22% of healthy cases detected as tumour cases and a false detection is around 9% of tumour cases detected as healthy cases. So, the tumour segmentation performed 0.67 Jaccard index and 0.69 Dice coefficient. Our methodology is found to be a fast, effective, accurate and fully automatic one without the need to any human interaction and prior knowledge for training phases as supervised methodologies in clinical applications.
英文关键词Skull stripping brain tumour detection and segmentation Gaussian mixture model Fuzzy C-Means stationary wavelet maxima entropy segmentation
类型Article
语种英语
国家Algeria
收录类别SCI-E
WOS记录号WOS:000455481000005
WOS关键词IMAGE FUSION ; WAVELET ; FUZZY
WOS类目Imaging Science & Photographic Technology
WOS研究方向Imaging Science & Photographic Technology
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/216262
作者单位1.USTHB, Lab Speech Commun & Signal Proc LCPTS, Algiers, Algeria;
2.Univ Medea, Lab Adv Elect Syst LSEA, Medea, Algeria
推荐引用方式
GB/T 7714
Kebir, S. Tchoketch,Mekaoui, S.,Bouhedda, M.. A fully automatic methodology for MRI brain tumour detection and segmentation[J],2019,67(1):42-62.
APA Kebir, S. Tchoketch,Mekaoui, S.,&Bouhedda, M..(2019).A fully automatic methodology for MRI brain tumour detection and segmentation.IMAGING SCIENCE JOURNAL,67(1),42-62.
MLA Kebir, S. Tchoketch,et al."A fully automatic methodology for MRI brain tumour detection and segmentation".IMAGING SCIENCE JOURNAL 67.1(2019):42-62.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Kebir, S. Tchoketch]的文章
[Mekaoui, S.]的文章
[Bouhedda, M.]的文章
百度学术
百度学术中相似的文章
[Kebir, S. Tchoketch]的文章
[Mekaoui, S.]的文章
[Bouhedda, M.]的文章
必应学术
必应学术中相似的文章
[Kebir, S. Tchoketch]的文章
[Mekaoui, S.]的文章
[Bouhedda, M.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。