Arid
DOI10.1109/ACCESS.2019.2932786
A Data Augmentation-Based Framework to Handle Class Imbalance Problem for Alzheimer's Stage Detection
Afzal, Sitara1; Maqsood, Muazzam1; Nazir, Faria2; Khan, Umair1; Aadil, Farhan1; Awan, Khalid M.1; Mehmood, Irfan3; Song, Oh-Young4
通讯作者Maqsood, Muazzam ; Song, Oh-Young
来源期刊IEEE ACCESS
ISSN2169-3536
出版年2019
卷号7页码:115528-115539
英文摘要Alzheimer's Disease (AD) is the most common form of dementia. It gradually increases from mild stage to severe, affecting the ability to perform common daily tasks without assistance. It is a neurodegenerative illness, presently having no specified cure. Computer-Aided Diagnostic Systems have played an important role to help physicians to identify AD. However, the diagnosis of AD into its four stages; No Dementia, Very Mild Dementia, Mild Dementia, and Moderate Dementia remains an open research area. Deep learning assisted computer-aided solutions are proved to be more useful because of their high accuracy. However, the most common problem with deep learning architecture is that large training data is required. Furthermore, the samples should be evenly distributed among the classes to avoid the class imbalance problem. The publicly available dataset (OASIS) has serious class imbalance problem. In this research, we employed a transfer learning-based technique using data augmentation for 3D Magnetic Resonance Imaging (MRI) views from OASIS dataset. The accuracy of the proposed model utilizing a single view of the brain MRI is 98.41% while using 3D-views is 95.11%. The proposed system outperformed the existing techniques for Alzheimer disease stages.
英文关键词Transfer learning AlexNet convolutional neural network Alzheimer's disease augmentation
类型Article
语种英语
国家Pakistan ; England ; South Korea
开放获取类型gold
收录类别SCI-E
WOS记录号WOS:000484224000001
WOS关键词MILD COGNITIVE IMPAIRMENT ; DISEASE CLASSIFICATION ; NEURAL-NETWORKS ; FEATURE-RANKING ; STRUCTURAL MRI ; RECOGNITION ; DIAGNOSIS ; SELECTION ; IMAGES
WOS类目Computer Science, Information Systems ; Engineering, Electrical & Electronic ; Telecommunications
WOS研究方向Computer Science ; Engineering ; Telecommunications
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/216237
作者单位1.COMSATS Univ Islamabad, Dept Comp Sci, Attock Campus, Attock 43600, Pakistan;
2.Capital Univ Sci & Technol, Dept Comp Sci, Islamabad 45750, Pakistan;
3.Univ Bradford, Fac Engn & Informat, Dept Media Design & Technol, Bradford BD7 1DP, W Yorkshire, England;
4.Sejong Univ, Dept Software, Seoul 05006, South Korea
推荐引用方式
GB/T 7714
Afzal, Sitara,Maqsood, Muazzam,Nazir, Faria,et al. A Data Augmentation-Based Framework to Handle Class Imbalance Problem for Alzheimer's Stage Detection[J],2019,7:115528-115539.
APA Afzal, Sitara.,Maqsood, Muazzam.,Nazir, Faria.,Khan, Umair.,Aadil, Farhan.,...&Song, Oh-Young.(2019).A Data Augmentation-Based Framework to Handle Class Imbalance Problem for Alzheimer's Stage Detection.IEEE ACCESS,7,115528-115539.
MLA Afzal, Sitara,et al."A Data Augmentation-Based Framework to Handle Class Imbalance Problem for Alzheimer's Stage Detection".IEEE ACCESS 7(2019):115528-115539.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Afzal, Sitara]的文章
[Maqsood, Muazzam]的文章
[Nazir, Faria]的文章
百度学术
百度学术中相似的文章
[Afzal, Sitara]的文章
[Maqsood, Muazzam]的文章
[Nazir, Faria]的文章
必应学术
必应学术中相似的文章
[Afzal, Sitara]的文章
[Maqsood, Muazzam]的文章
[Nazir, Faria]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。