Arid
DOI10.1007/s10040-018-1848-5
Groundwater potential mapping using a novel data-mining ensemble model
Kordestani, Mojtaba Dolat1; Naghibi, Seyed Amir2,3; Hashemi, Hossein2,3; Ahmadi, Kourosh4; Kalantar, Bahareh5; Pradhan, Biswajeet6,7
通讯作者Naghibi, Seyed Amir
来源期刊HYDROGEOLOGY JOURNAL
ISSN1431-2174
EISSN1435-0157
出版年2019
卷号27期号:1页码:211-224
英文摘要Freshwater scarcity is an ever-increasing problem throughout the arid and semi-arid countries, and it often results in poverty. Thus, it is necessary to enhance understanding of freshwater resources availability, particularly for groundwater, and to be able to implement functional water resources plans. This study introduces a novel statistical approach combined with a data-mining ensemble model, through implementing evidential belief function and boosted regression tree (EBF-BRT) algorithms for groundwater potential mapping of the Lordegan aquifer in central Iran. To do so, spring locations are determined and partitioned into two groups for training and validating the individual and ensemble methods. In the next step, 12 groundwater-conditioning factors (GCFs), including topographical and hydrogeological factors, are prepared for the modeling process. The mentioned factors are employed in the application of the EBF model. Then, the EBF values of the GCFs are implemented as input to the BRT algorithm. The results of the modeling process are plotted to produce spring (groundwater) potential maps. To verify the results, the receiver operating characteristics (ROC) test is applied to the model's output. The findings of the test indicated that the areas under the ROC curves are 75 and 82% for the EBF and EBF-BRT models, respectively. Therefore, it can be inferred that the combination of the two techniques could increase the efficacy of these methods in groundwater potential mapping.
英文关键词Geographic information system (GIS) Groundwater management Data mining Iran
类型Article
语种英语
国家Iran ; Sweden ; Japan ; Australia ; South Korea
开放获取类型hybrid, Green Submitted
收录类别SCI-E
WOS记录号WOS:000458520300014
WOS关键词SUPPORT VECTOR MACHINE ; ARTIFICIAL NEURAL-NETWORKS ; FREQUENCY RATIO ; SPATIAL PREDICTION ; RANDOM FOREST ; GIS ; BIVARIATE ; PROVINCE ; WEIGHTS ; REGION
WOS类目Geosciences, Multidisciplinary ; Water Resources
WOS研究方向Geology ; Water Resources
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/216162
作者单位1.Jiroft Univ, Jiroft Univ Scholarship, Univ Hormozgan, Fac Rangeland & Watershed Management,Dept Combat, Jiroft, Iran;
2.Lund Univ, Ctr Middle Eastern Studies, Lund, Sweden;
3.Lund Univ, Dept Water Resources Engn, Lund, Sweden;
4.Tarbiat Modares Univ, Dept Forestry, Coll Nat Resources, Noor, Mazandaran, Iran;
5.RIKEN, Goal Oriented Technol Res Grp, Disaster Resilience Sci Team, Ctr Adv Intelligence Project, Tokyo 1030027, Japan;
6.Univ Technol Sydney, Fac Engn & IT, CAMGIS, Sydney, NSW 2007, Australia;
7.Sejong Univ, Dept Energy & Mineral Resources Engn, 209 Neungdong Ro, Seoul 05006, South Korea
推荐引用方式
GB/T 7714
Kordestani, Mojtaba Dolat,Naghibi, Seyed Amir,Hashemi, Hossein,et al. Groundwater potential mapping using a novel data-mining ensemble model[J],2019,27(1):211-224.
APA Kordestani, Mojtaba Dolat,Naghibi, Seyed Amir,Hashemi, Hossein,Ahmadi, Kourosh,Kalantar, Bahareh,&Pradhan, Biswajeet.(2019).Groundwater potential mapping using a novel data-mining ensemble model.HYDROGEOLOGY JOURNAL,27(1),211-224.
MLA Kordestani, Mojtaba Dolat,et al."Groundwater potential mapping using a novel data-mining ensemble model".HYDROGEOLOGY JOURNAL 27.1(2019):211-224.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Kordestani, Mojtaba Dolat]的文章
[Naghibi, Seyed Amir]的文章
[Hashemi, Hossein]的文章
百度学术
百度学术中相似的文章
[Kordestani, Mojtaba Dolat]的文章
[Naghibi, Seyed Amir]的文章
[Hashemi, Hossein]的文章
必应学术
必应学术中相似的文章
[Kordestani, Mojtaba Dolat]的文章
[Naghibi, Seyed Amir]的文章
[Hashemi, Hossein]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。