Arid
DOI10.1111/grs.12262
A new temporal prediction method of grazing pressure based on normalized difference vegetation index and precipitation using nonlinear autoregressive with exogenous input networks
Wu, Taosuo1,2,3; Feng, Feng4; Lin, Qian5; Bai, Hongmei1,3
通讯作者Feng, Feng
来源期刊GRASSLAND SCIENCE
ISSN1744-6961
EISSN1744-697X
出版年2020
卷号66期号:2页码:116-123
英文摘要Restoration of natural vegetation in arid and semi-arid grasslands is facing severe challenges. The vegetation is easy to lose their vitality, resulting in the loss of the cover in natural grasslands under the high grazing pressure. To address this situation, this paper proposes a novel method for accurately predicting the grazing pressure using the nonlinear autoregressive with exogenous input (NARX) network based on the remote sensing data of normalized difference vegetation index (NDVI) and precipitation. The proposed method uses the NARX networks to predict the temporal variations of the NDVI with respect to the precipitation. The grazing pressure can be thus calculated using the predicted values of the NDVI. For practical application, this study investigated an arid and semi-arid grassland with heavy grazing pressure in Hulunbuir, China. The results demonstrate that the proposed method can provide an accurate prediction of the grazing pressure (mean absolute error 0.103, root-mean-square error 0.122, mean absolute percentage error 8.36% and coefficient of determination 0.899 at the confidence interval of 95%). In addition, the predicted values of the grazing pressure in the study area during the years from 2016 to 2020 can be obtained using the proposed method. The proposed method can obtain a good prediction of the grazing pressure, which can be further used as a guidance for the rangeland managers to reduce the occurrence of the overgrazing.
英文关键词grazing pressure NARX network NDVI precipitation prediction
类型Article
语种英语
国家Peoples R China ; Canada
收录类别SCI-E
WOS记录号WOS:000489242100001
WOS关键词INNER-MONGOLIA ; NEURAL-NETWORK ; GRASSLAND ; RANGELAND ; EROSION ; STEPPE ; CHINA
WOS类目Agriculture, Multidisciplinary ; Agronomy
WOS研究方向Agriculture
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/216109
作者单位1.Tianjin Univ, Sch Microelect, Tianjin, Peoples R China;
2.Hulunbuir Coll, Sch Phys & Elect Informat, Hulunbuir, Peoples R China;
3.Tianjin Univ, Tianjin Key Lab Imaging & Sensing Microelect Tech, Tianjin, Peoples R China;
4.Carleton Univ, Dept Elect, 1125 Colonel By Dr, Ottawa, ON K1S 5B6, Canada;
5.Qinghai Nationalities Univ, Xining, Qinghai, Peoples R China
推荐引用方式
GB/T 7714
Wu, Taosuo,Feng, Feng,Lin, Qian,et al. A new temporal prediction method of grazing pressure based on normalized difference vegetation index and precipitation using nonlinear autoregressive with exogenous input networks[J],2020,66(2):116-123.
APA Wu, Taosuo,Feng, Feng,Lin, Qian,&Bai, Hongmei.(2020).A new temporal prediction method of grazing pressure based on normalized difference vegetation index and precipitation using nonlinear autoregressive with exogenous input networks.GRASSLAND SCIENCE,66(2),116-123.
MLA Wu, Taosuo,et al."A new temporal prediction method of grazing pressure based on normalized difference vegetation index and precipitation using nonlinear autoregressive with exogenous input networks".GRASSLAND SCIENCE 66.2(2020):116-123.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wu, Taosuo]的文章
[Feng, Feng]的文章
[Lin, Qian]的文章
百度学术
百度学术中相似的文章
[Wu, Taosuo]的文章
[Feng, Feng]的文章
[Lin, Qian]的文章
必应学术
必应学术中相似的文章
[Wu, Taosuo]的文章
[Feng, Feng]的文章
[Lin, Qian]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。