Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.3389/fmicb.2019.00496 |
Temperature-Dependent Network Modules of Soil Methanogenic Bacterial and Archaeal Communities | |
Liu, Pengfei; Klose, Melanie; Conrad, Ralf | |
通讯作者 | Liu, Pengfei |
来源期刊 | FRONTIERS IN MICROBIOLOGY
![]() |
ISSN | 1664-302X |
出版年 | 2019 |
卷号 | 10 |
英文摘要 | Temperature is an important factor regulating the production of the greenhouse gas CH4. Structure and function of the methanogenic microbial communities are often drastically different upon incubation at 45 degrees C versus 25 degrees C or 35 degrees C, but are also different in different soils. However, the extent of taxonomic redundancy within each functional group and the existence of different temperature-dependent microbial community network modules are unknown. Therefore, we investigated paddy soils from Italy and the Philippines and a desert soil from Utah (United States), which all expressed CH4 production upon flooding and exhibited structural and functional differences upon incubation at three different temperatures. We continued incubation of the pre-incubated soils (Liu et al., 2018) by changing the temperature in a factorial manner. We determined composition, abundance and function of the methanogenic archaeal and bacterial communities using HiSeq Illumine sequencing, qPCR and analysis of activity and stable isotope fractionation, respectively. Heatmap analysis of operational taxonomic units (OTU) from the different incubations gave detailed insights into the community structures and their putative functions. Network analysis showed that the microbial communities in the different soils were all organized within modules distinct for the three incubation temperatures. The diversity of Bacteria and Archaea was always lower at 45 degrees C than at 25 or 35 degrees C. A shift from 45 degrees C to lower temperatures did not recover archaeal diversity, but nevertheless resulted in the establishment of structures and functions that were largely typical for soil at moderate temperatures. At 25 and 35 degrees C and after shifting to one of these temperatures, CH4 was always produced by a combination of acetoclastic and hydrogenotrophic methanogenesis being consistent with the presence of acetoclastic (Methanosarcinaceae, Methanotrichaceae) and hydrogenotrophic (Methanobacteriales, Methanocellales, Methanosarcinaceae) methanogens. At 45 degrees C, however, or after shifting from moderate temperatures to 45 degrees C, only the Philippines soil maintained such combination, while the other soils were devoid of acetoclastic methanogens and consumed acetate instead by syntrophic acetate oxidation coupled to hydrogenotrophic methanogenesis. Syntrophic acetate oxidation was apparently achieved by Thermoanaerobacteraceae, which were especially abundant in Italian paddy soil and Utah desert soil when incubated at 45 degrees C. Other bacterial taxa were also differently abundant at 45 degrees C versus moderate temperatures, as seen by the formation of specific network modules. However, the archaeal OTUs with putative function in acetoclastic or hydrogenotrophic methanogenesis as well as the bacterial OTUs were usually not identical across the different soils and incubation conditions, and if they were, they suggested the existence of mesophilic and thermophilic ecotypes within the same OTUs. Overall, methanogenic function was determined by the bacterial and/or archaeal community structures, which in turn were to quite some extent determined by the incubation temperature, albeit largely individually in each soil. There was quite some functional redundancy as seen by different taxonomic community structures in the different soils and at the different temperatures. |
英文关键词 | temperature shifts methanogenesis pathway methanogenic community paddy soil desert soil functional redundancy |
类型 | Article |
语种 | 英语 |
国家 | Germany |
开放获取类型 | Green Published, gold |
收录类别 | SCI-E |
WOS记录号 | WOS:000460972000001 |
WOS关键词 | RICE FIELD SOIL ; MICROBIAL COMMUNITIES ; WETLAND RICE ; PADDY SOILS ; METHANE ; DIVERSITY ; ACETATE ; CARBON ; SIGNATURES ; REDUCTION |
WOS类目 | Microbiology |
WOS研究方向 | Microbiology |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/215785 |
作者单位 | Max Planck Inst Terr Microbiol, Marburg, Germany |
推荐引用方式 GB/T 7714 | Liu, Pengfei,Klose, Melanie,Conrad, Ralf. Temperature-Dependent Network Modules of Soil Methanogenic Bacterial and Archaeal Communities[J],2019,10. |
APA | Liu, Pengfei,Klose, Melanie,&Conrad, Ralf.(2019).Temperature-Dependent Network Modules of Soil Methanogenic Bacterial and Archaeal Communities.FRONTIERS IN MICROBIOLOGY,10. |
MLA | Liu, Pengfei,et al."Temperature-Dependent Network Modules of Soil Methanogenic Bacterial and Archaeal Communities".FRONTIERS IN MICROBIOLOGY 10(2019). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。