Arid
DOI10.3390/brainsci9090212
Classification of Alzheimer's Disease with and without Imagery Using Gradient Boosted Machines and ResNet-50
Fulton, Lawrence, V1; Dolezel, Diane1; Harrop, Jordan2; Yan, Yan1; Fulton, Christopher P.3
通讯作者Fulton, Christopher P.
来源期刊BRAIN SCIENCES
EISSN2076-3425
出版年2019
卷号9期号:9
英文摘要Background. Alzheimer's is a disease for which there is no cure. Diagnosing Alzheimer's disease (AD) early facilitates family planning and cost control. The purpose of this study is to predict the presence of AD using socio-demographic, clinical, and magnetic resonance imaging (MRI) data. Early detection of AD enables family planning and may reduce costs by delaying long-term care. Accurate, non-imagery methods also reduce patient costs. The Open Access Series of Imaging Studies (OASIS-1) cross-sectional MRI data were analyzed. A gradient boosted machine (GBM) predicted the presence of AD as a function of gender, age, education, socioeconomic status (SES), and a mini-mental state exam (MMSE). A residual network with 50 layers (ResNet-50) predicted the clinical dementia rating (CDR) presence and severity from MRI's (multi-class classification). The GBM achieved a mean 91.3% prediction accuracy (10-fold stratified cross validation) for dichotomous CDR using socio-demographic and MMSE variables. MMSE was the most important feature. ResNet-50 using image generation techniques based on an 80% training set resulted in 98.99% three class prediction accuracy on 4139 images (20% validation set) at Epoch 133 and nearly perfect multi-class predication accuracy on the training set (99.34%). Machine learning methods classify AD with high accuracy. GBM models may help provide initial detection based on non-imagery analysis, while ResNet-50 network models might help identify AD patients automatically prior to provider review.
英文关键词Alzheimer's disease extreme gradient boosting deep residual learning convolutional neural networks machine learning dementia
类型Article
语种英语
国家USA
开放获取类型gold, Green Published, Green Submitted
收录类别SCI-E
WOS记录号WOS:000487745400011
WOS关键词CLINICAL SCORE PREDICTION ; DEMENTIA ; YOUNG
WOS类目Neurosciences
WOS研究方向Neurosciences & Neurology
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/214734
作者单位1.Texas State Univ, Dept Hlth Adm, 601 Univ Dr, San Marcos, TX 78666 USA;
2.Acushnet Holdings Corp, Acushnet, MA 02743 USA;
3.US Air Force, Expt Test Pilot Sch, Edwards AFB, CA 93524 USA
推荐引用方式
GB/T 7714
Fulton, Lawrence, V,Dolezel, Diane,Harrop, Jordan,et al. Classification of Alzheimer's Disease with and without Imagery Using Gradient Boosted Machines and ResNet-50[J],2019,9(9).
APA Fulton, Lawrence, V,Dolezel, Diane,Harrop, Jordan,Yan, Yan,&Fulton, Christopher P..(2019).Classification of Alzheimer's Disease with and without Imagery Using Gradient Boosted Machines and ResNet-50.BRAIN SCIENCES,9(9).
MLA Fulton, Lawrence, V,et al."Classification of Alzheimer's Disease with and without Imagery Using Gradient Boosted Machines and ResNet-50".BRAIN SCIENCES 9.9(2019).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Fulton, Lawrence, V]的文章
[Dolezel, Diane]的文章
[Harrop, Jordan]的文章
百度学术
百度学术中相似的文章
[Fulton, Lawrence, V]的文章
[Dolezel, Diane]的文章
[Harrop, Jordan]的文章
必应学术
必应学术中相似的文章
[Fulton, Lawrence, V]的文章
[Dolezel, Diane]的文章
[Harrop, Jordan]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。