Arid
DOI10.1080/09524622.2019.1605309
Statistical learning mitigation of false positives from template-detected data in automated acoustic wildlife monitoring
Balantic, Cathleen M.1; Donovan, Therese M.2
通讯作者Balantic, Cathleen M.
来源期刊BIOACOUSTICS-THE INTERNATIONAL JOURNAL OF ANIMAL SOUND AND ITS RECORDING
ISSN0952-4622
EISSN2165-0586
出版年2020
卷号29期号:3页码:296-321
英文摘要Audio sampling of the environment can provide long-term, landscape-scale presence-absence data to model populations of sound-producing wildlife. Automated detection systems allow researchers to avoid manually searching through large volumes of recordings, but often produce unacceptable false positive rates. We developed methods that allow researchers to improve template-based automated detection using a suite of statistical learning algorithms when false positive rates are problematic. To test our method, we acquired 668 hours of recordings in the Sonoran Desert, California USA between March 2016 and May 2017, and created spectrogram cross-correlation templates for three target avian species. We trained and tested five classification algorithms and four performance-weighted ensemble classifier methods on target signals and false alarms from March 2016, and then selected high-performing ensemble classifiers from the train/test phase to predict the class of new detections thereafter. For three target species, our ensemble classifiers were able to identify 98%, 81%, and 100% of false alarms compared with the baseline template detection system, and comparative positive predictive values improved from 6% to 69%, 87% to 95%, and 2% to 77%. We show that statistical learning approaches can be implemented to mitigate false detections acquired via template-based automated detection in automated acoustic wildlife monitoring.
英文关键词Automated acoustic monitoring bioacoustics false positives machine learning species identification statistical learning
类型Article
语种英语
国家USA
开放获取类型hybrid
收录类别SCI-E
WOS记录号WOS:000470380800001
WOS关键词SPECIES OCCURRENCE ; OCCUPANCY MODELS ; FRAMEWORK
WOS类目Zoology
WOS研究方向Zoology
来源机构United States Geological Survey
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/214589
作者单位1.Univ Vermont, Vermont Cooperat Fish & Wildlife Res Unit, Burlington, VT 05405 USA;
2.Univ Vermont, Rubenstein Sch Environm & Nat Resources, Vermont Cooperat Fish & Wildlife Res Unit, US Geol Survey, Burlington, VT USA
推荐引用方式
GB/T 7714
Balantic, Cathleen M.,Donovan, Therese M.. Statistical learning mitigation of false positives from template-detected data in automated acoustic wildlife monitoring[J]. United States Geological Survey,2020,29(3):296-321.
APA Balantic, Cathleen M.,&Donovan, Therese M..(2020).Statistical learning mitigation of false positives from template-detected data in automated acoustic wildlife monitoring.BIOACOUSTICS-THE INTERNATIONAL JOURNAL OF ANIMAL SOUND AND ITS RECORDING,29(3),296-321.
MLA Balantic, Cathleen M.,et al."Statistical learning mitigation of false positives from template-detected data in automated acoustic wildlife monitoring".BIOACOUSTICS-THE INTERNATIONAL JOURNAL OF ANIMAL SOUND AND ITS RECORDING 29.3(2020):296-321.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Balantic, Cathleen M.]的文章
[Donovan, Therese M.]的文章
百度学术
百度学术中相似的文章
[Balantic, Cathleen M.]的文章
[Donovan, Therese M.]的文章
必应学术
必应学术中相似的文章
[Balantic, Cathleen M.]的文章
[Donovan, Therese M.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。