Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.3390/atmos10060311 |
A Hybrid Data-Driven Machine Learning Technique for Evapotranspiration Modeling in Various Climates | |
Valipour, Mohammad1; Sefidkouhi, Mohammad Ali Gholami2; Raeini-Sarjaz, Mahmoud2; Guzman, Sandra M.1 | |
通讯作者 | Valipour, Mohammad |
来源期刊 | ATMOSPHERE
![]() |
EISSN | 2073-4433 |
出版年 | 2019 |
卷号 | 10期号:6 |
英文摘要 | In the current research, gene expression programming (GEP) was applied to model reference evapotranspiration (ETo) in 18 regions of Iran with limited meteorological data. Initially, a genetic algorithm (GA) was employed to detect the most important variables for estimating ETo among mean temperature (Tmean), maximum temperature (Tmax), minimum temperature (Tmin), relative humidity (RH), sunshine (n), and wind speed (WS). The results indicated that a coupled model containing the Tmean and WS can predict ETo accurately (RMSE = 0.3263 mm day(-1)) for arid, semiarid, and Mediterranean climates. Therefore, this model was adjusted using the GEP for all 18 synoptic stations. Under very humid climates, it is recommended to use a temperature-based GEP model versus wind speed-based GEP model. The optimal and lowest performance of the GEP belonged to Shahrekord (SK), RMSE = 0.0650 mm day(-1), and Kerman (KE), RMSE = 0.4177 mm day(-1), respectively. This research shows that the GEP is a robust tool to model ETo in semiarid and Mediterranean climates (R-2 > 0.80). However, GEP is recommended to be used cautiously under very humid climates and some of arid regions (R-2 < 0.50) due to its poor performance under such extreme conditions. |
英文关键词 | machine learning crop water requirement Iran hydrological extremes uncertainty weather parameters |
类型 | Article |
语种 | 英语 |
国家 | USA ; Iran |
开放获取类型 | gold |
收录类别 | SCI-E |
WOS记录号 | WOS:000473749900020 |
WOS关键词 | GENETIC PROGRAMMING APPROACH ; ARTIFICIAL-INTELLIGENCE ; NEURAL-NETWORKS ; PERFORMANCE ; CALIBRATION ; PREDICTION ; EQUATION ; SOUTH |
WOS类目 | Environmental Sciences ; Meteorology & Atmospheric Sciences |
WOS研究方向 | Environmental Sciences & Ecology ; Meteorology & Atmospheric Sciences |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/214448 |
作者单位 | 1.Univ Florida, Indian River Res & Educ Ctr, Dept Agr & Biol Engn, Ft Pierce, FL 34945 USA; 2.Sari Agr Sci & Nat Resources Univ, Dept Water Engn, Sari, Iran |
推荐引用方式 GB/T 7714 | Valipour, Mohammad,Sefidkouhi, Mohammad Ali Gholami,Raeini-Sarjaz, Mahmoud,et al. A Hybrid Data-Driven Machine Learning Technique for Evapotranspiration Modeling in Various Climates[J],2019,10(6). |
APA | Valipour, Mohammad,Sefidkouhi, Mohammad Ali Gholami,Raeini-Sarjaz, Mahmoud,&Guzman, Sandra M..(2019).A Hybrid Data-Driven Machine Learning Technique for Evapotranspiration Modeling in Various Climates.ATMOSPHERE,10(6). |
MLA | Valipour, Mohammad,et al."A Hybrid Data-Driven Machine Learning Technique for Evapotranspiration Modeling in Various Climates".ATMOSPHERE 10.6(2019). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。