Arid
DOI10.3390/atmos10060311
A Hybrid Data-Driven Machine Learning Technique for Evapotranspiration Modeling in Various Climates
Valipour, Mohammad1; Sefidkouhi, Mohammad Ali Gholami2; Raeini-Sarjaz, Mahmoud2; Guzman, Sandra M.1
通讯作者Valipour, Mohammad
来源期刊ATMOSPHERE
EISSN2073-4433
出版年2019
卷号10期号:6
英文摘要In the current research, gene expression programming (GEP) was applied to model reference evapotranspiration (ETo) in 18 regions of Iran with limited meteorological data. Initially, a genetic algorithm (GA) was employed to detect the most important variables for estimating ETo among mean temperature (Tmean), maximum temperature (Tmax), minimum temperature (Tmin), relative humidity (RH), sunshine (n), and wind speed (WS). The results indicated that a coupled model containing the Tmean and WS can predict ETo accurately (RMSE = 0.3263 mm day(-1)) for arid, semiarid, and Mediterranean climates. Therefore, this model was adjusted using the GEP for all 18 synoptic stations. Under very humid climates, it is recommended to use a temperature-based GEP model versus wind speed-based GEP model. The optimal and lowest performance of the GEP belonged to Shahrekord (SK), RMSE = 0.0650 mm day(-1), and Kerman (KE), RMSE = 0.4177 mm day(-1), respectively. This research shows that the GEP is a robust tool to model ETo in semiarid and Mediterranean climates (R-2 > 0.80). However, GEP is recommended to be used cautiously under very humid climates and some of arid regions (R-2 < 0.50) due to its poor performance under such extreme conditions.
英文关键词machine learning crop water requirement Iran hydrological extremes uncertainty weather parameters
类型Article
语种英语
国家USA ; Iran
开放获取类型gold
收录类别SCI-E
WOS记录号WOS:000473749900020
WOS关键词GENETIC PROGRAMMING APPROACH ; ARTIFICIAL-INTELLIGENCE ; NEURAL-NETWORKS ; PERFORMANCE ; CALIBRATION ; PREDICTION ; EQUATION ; SOUTH
WOS类目Environmental Sciences ; Meteorology & Atmospheric Sciences
WOS研究方向Environmental Sciences & Ecology ; Meteorology & Atmospheric Sciences
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/214448
作者单位1.Univ Florida, Indian River Res & Educ Ctr, Dept Agr & Biol Engn, Ft Pierce, FL 34945 USA;
2.Sari Agr Sci & Nat Resources Univ, Dept Water Engn, Sari, Iran
推荐引用方式
GB/T 7714
Valipour, Mohammad,Sefidkouhi, Mohammad Ali Gholami,Raeini-Sarjaz, Mahmoud,et al. A Hybrid Data-Driven Machine Learning Technique for Evapotranspiration Modeling in Various Climates[J],2019,10(6).
APA Valipour, Mohammad,Sefidkouhi, Mohammad Ali Gholami,Raeini-Sarjaz, Mahmoud,&Guzman, Sandra M..(2019).A Hybrid Data-Driven Machine Learning Technique for Evapotranspiration Modeling in Various Climates.ATMOSPHERE,10(6).
MLA Valipour, Mohammad,et al."A Hybrid Data-Driven Machine Learning Technique for Evapotranspiration Modeling in Various Climates".ATMOSPHERE 10.6(2019).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Valipour, Mohammad]的文章
[Sefidkouhi, Mohammad Ali Gholami]的文章
[Raeini-Sarjaz, Mahmoud]的文章
百度学术
百度学术中相似的文章
[Valipour, Mohammad]的文章
[Sefidkouhi, Mohammad Ali Gholami]的文章
[Raeini-Sarjaz, Mahmoud]的文章
必应学术
必应学术中相似的文章
[Valipour, Mohammad]的文章
[Sefidkouhi, Mohammad Ali Gholami]的文章
[Raeini-Sarjaz, Mahmoud]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。