Arid
DOI10.1007/s11269-017-1811-6
Comparative Study of Hybrid-Wavelet Artificial Intelligence Models for Monthly Groundwater Depth Forecasting in Extreme Arid Regions, Northwest China
Yu, Haijiao1,2; Wen, Xiaohu1; Feng, Qi1; Deo, Ravinesh C.3; Si, Jianhua1; Wu, Min1,2
通讯作者Wen, Xiaohu ; Deo, Ravinesh C.
来源期刊WATER RESOURCES MANAGEMENT
ISSN0920-4741
EISSN1573-1650
出版年2018
卷号32期号:1页码:301-323
英文摘要

Prediction of groundwater depth (GWD) is a critical task in water resources management. In this study, the practicability of predicting GWD for lead times of 1, 2 and 3 months for 3 observation wells in the Ejina Basin using the wavelet-artificial neural network (WA-ANN) and wavelet-support vector regression (WA-SVR) is demonstrated. Discrete wavelet transform was applied to decompose groundwater depth and meteorological inputs into approximations and detail with predictive features embedded in high frequency and low frequency. WA-ANN and WA-SVR relative of ANN and SVR were evaluated with coefficient of correlation (R), Nash-Sutcliffe efficiency (NS), mean absolute error (MAE), and root mean squared error (RMSE). Results showed that WA-ANN and WA-SVR have better performance than ANN and SVR models. WA-SVR yielded better results than WA-ANN model for 1, 2 and 3-month lead times. The study indicates that WA-SVR could be applied for groundwater forecasting under ecological water conveyance conditions.


英文关键词Discrete wavelet transform Artificial neural network Support vector regression Groundwater level fluctuations Extreme arid regions
类型Article
语种英语
国家Peoples R China ; Australia
收录类别SCI-E
WOS记录号WOS:000419553800018
WOS关键词NEURAL-NETWORK APPROACH ; SUPPORT VECTOR MACHINE ; HEIHE RIVER ; LOWER REACHES ; EJINA BASIN ; TIME-SERIES ; VEGETATION ; LEVEL ; WATER ; FLUCTUATIONS
WOS类目Engineering, Civil ; Water Resources
WOS研究方向Engineering ; Water Resources
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/213689
作者单位1.Chinese Acad Sci, Northwest Inst Ecoenvironm & Resources, Key Lab Ecohydrol Inland River Basin, Lanzhou 730000, Gansu, Peoples R China;
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China;
3.Univ Southern Queensland, Inst Agr & Environm IAg&E, Sch Agr Computat & Environm Sci, Springfield, Qld 4300, Australia
推荐引用方式
GB/T 7714
Yu, Haijiao,Wen, Xiaohu,Feng, Qi,et al. Comparative Study of Hybrid-Wavelet Artificial Intelligence Models for Monthly Groundwater Depth Forecasting in Extreme Arid Regions, Northwest China[J],2018,32(1):301-323.
APA Yu, Haijiao,Wen, Xiaohu,Feng, Qi,Deo, Ravinesh C.,Si, Jianhua,&Wu, Min.(2018).Comparative Study of Hybrid-Wavelet Artificial Intelligence Models for Monthly Groundwater Depth Forecasting in Extreme Arid Regions, Northwest China.WATER RESOURCES MANAGEMENT,32(1),301-323.
MLA Yu, Haijiao,et al."Comparative Study of Hybrid-Wavelet Artificial Intelligence Models for Monthly Groundwater Depth Forecasting in Extreme Arid Regions, Northwest China".WATER RESOURCES MANAGEMENT 32.1(2018):301-323.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Yu, Haijiao]的文章
[Wen, Xiaohu]的文章
[Feng, Qi]的文章
百度学术
百度学术中相似的文章
[Yu, Haijiao]的文章
[Wen, Xiaohu]的文章
[Feng, Qi]的文章
必应学术
必应学术中相似的文章
[Yu, Haijiao]的文章
[Wen, Xiaohu]的文章
[Feng, Qi]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。