Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.1016/j.solmat.2018.09.011 |
Anti-soiling and highly transparent coatings with multi-scale features | |
Polizos, Georgios1; Sharma, Jaswinder K.1; Smith, D. Barton1; Tuncer, Enis5; Park, Jaehyeung1; Voylov, Dmitry4; Sokolov, Alexei P.2,4; Meyer, Harry M., III3; Aman, Matthew6 | |
通讯作者 | Polizos, Georgios |
来源期刊 | SOLAR ENERGY MATERIALS AND SOLAR CELLS
![]() |
ISSN | 0927-0248 |
EISSN | 1879-3398 |
出版年 | 2018 |
卷号 | 188页码:255-262 |
英文摘要 | Soiling of optical surfaces due to sand and dust accumulation is the main cause for decreased efficiency of concentrating solar power and photovoltaic installations in desert areas. Nanostructured coatings with tailored surface roughness can reduce the rate of soil accumulation and maintain the high optical performance of the solar mirrors and cover glass. Here, we investigate the correlation between the size and structure of the surface features of the coating and its anti-soiling and optical properties. To control the morphology of the surface features we developed two types of coating: (1) based on small size (30-50 nm) silica particles with nanostructured surface and (2) based on unstructured nanoparticles with bimodal size distribution (80 and 35 nm). We tailored the surface features of the coatings to achieve synergistic improvements over different length-scales and thus decrease the adhesion force between the soil particles and the surface. Adhesion force measurements were performed using atomic force microscopy. The adhesion force and energy required to separate a silica particle from the surface of coated solar glass was significantly lower than the respective values from the surface of uncoated solar glass. A falling sand abrasion test, modeled after the procedure in ASTM D968, was performed. The optical properties of coated and uncoated solar glass were measured before and after the soiling test. Coated solar mirror samples were tested in the field. The results of the field test provided evidence that the anti-soiling coating is effective at reducing soiling and improving the specular reflectances of the coated mirrors. The use of the developed anti-soiling coating can be extended to other power-grid applications where reducing the soil accumulation is valuable. |
英文关键词 | Anti-soiling Anti-reflective Superhydrophobic Adhesion force Concentrating solar power |
类型 | Article |
语种 | 英语 |
国家 | USA |
收录类别 | SCI-E |
WOS记录号 | WOS:000449239900031 |
WOS关键词 | NANOSCALE ROUGH SURFACES ; CAPILLARY FORCE ; ADHESION ; PARTICLE ; GEOMETRY |
WOS类目 | Energy & Fuels ; Materials Science, Multidisciplinary ; Physics, Applied |
WOS研究方向 | Energy & Fuels ; Materials Science ; Physics |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/213262 |
作者单位 | 1.Oak Ridge Natl Lab, Div Energy & Transportat Sci, Oak Ridge, TN 37831 USA; 2.Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA; 3.Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA; 4.Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA; 5.Texas Instruments Inc, Dallas, TX 75243 USA; 6.NRG Energy Serv, Houston, TX 77002 USA |
推荐引用方式 GB/T 7714 | Polizos, Georgios,Sharma, Jaswinder K.,Smith, D. Barton,et al. Anti-soiling and highly transparent coatings with multi-scale features[J],2018,188:255-262. |
APA | Polizos, Georgios.,Sharma, Jaswinder K..,Smith, D. Barton.,Tuncer, Enis.,Park, Jaehyeung.,...&Aman, Matthew.(2018).Anti-soiling and highly transparent coatings with multi-scale features.SOLAR ENERGY MATERIALS AND SOLAR CELLS,188,255-262. |
MLA | Polizos, Georgios,et al."Anti-soiling and highly transparent coatings with multi-scale features".SOLAR ENERGY MATERIALS AND SOLAR CELLS 188(2018):255-262. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。