Arid
DOI10.1590/1807-1929/agriambi.v22n5p315-319
Prediction of ’Gigante’ cactus pear yield by morphological characters and artificial neural networks
Guimaraes, Bruno V. C.1; Donato, Sergio L. R.2; Azevedo, Akinei M.3; Aspiazu, Ignacio4; Silva Junior, Ancilon A. e2
通讯作者Guimaraes, Bruno V. C.
来源期刊REVISTA BRASILEIRA DE ENGENHARIA AGRICOLA E AMBIENTAL
ISSN1807-1929
出版年2018
卷号22期号:5页码:315-319
英文摘要

Estimating cactus pear yield is important for the planning of small and medium rural producers, especially in environments with adverse climatic conditions, such as the Brazilian semi-arid region. The objective of this study was to evaluate the potential of artificial neural networks (ANN) for predicting yield of Gigante’ cactus pear, and determine the most important morphological characters for this prediction. ’the experiment was conducted in the Instituto Federal Baiano, Guanambi campus, Bahia, Brazil , in 2009 to 2011. The area used is located at 14 degrees 13’ 30 ’’ S and 42 degrees 46’ 53 ’’ W, and its altitude is 525 m. Six vegetative agronomic characters were evaluated in 500 plants in the third production cycle. The data were subjected to ANN analysis using the R software. Ten network architectures were trained 100 times to select the one with the lowest mean square error for the validation data. The networks with five neurons in the middle layer presented the best results. Neural networks with coefficient of determination (R-2) of 0.87 were adjusted for sample validation, assuring the generalization potential of the model. ’the morphological characters with the highest relative contribution to yield estimate were total cladode area, plant height, cladode thickness and cladode length, but all characters were important for predicting the cactus pear yield. Therefore, predicting the production of cactus pear with high precision using ANN and morphological characters is possible.


英文关键词yield estimation artificial logic production Opuntia ficus indica
类型Article
语种英语
国家Brazil
收录类别SCI-E
WOS记录号WOS:000434823800003
WOS关键词EFFICIENCY ; SELECTION ; DIETS
WOS类目Agricultural Engineering
WOS研究方向Agriculture
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/212757
作者单位1.Inst Fed Amazonas, Dept Ciencias Agr, Sao Gabriel Da Cachoeira, AM, Brazil;
2.Inst Fed Baiano, Dept Ciencias Agr, Guanambi, BA, Brazil;
3.Univ Fed Minas Gerais, Inst Ciencias Agr, Montes Claros, MG, Brazil;
4.Univ Estadual Montes Claros, Dept Ciencias Agr, Janauba, MG, Brazil
推荐引用方式
GB/T 7714
Guimaraes, Bruno V. C.,Donato, Sergio L. R.,Azevedo, Akinei M.,等. Prediction of ’Gigante’ cactus pear yield by morphological characters and artificial neural networks[J],2018,22(5):315-319.
APA Guimaraes, Bruno V. C.,Donato, Sergio L. R.,Azevedo, Akinei M.,Aspiazu, Ignacio,&Silva Junior, Ancilon A. e.(2018).Prediction of ’Gigante’ cactus pear yield by morphological characters and artificial neural networks.REVISTA BRASILEIRA DE ENGENHARIA AGRICOLA E AMBIENTAL,22(5),315-319.
MLA Guimaraes, Bruno V. C.,et al."Prediction of ’Gigante’ cactus pear yield by morphological characters and artificial neural networks".REVISTA BRASILEIRA DE ENGENHARIA AGRICOLA E AMBIENTAL 22.5(2018):315-319.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Guimaraes, Bruno V. C.]的文章
[Donato, Sergio L. R.]的文章
[Azevedo, Akinei M.]的文章
百度学术
百度学术中相似的文章
[Guimaraes, Bruno V. C.]的文章
[Donato, Sergio L. R.]的文章
[Azevedo, Akinei M.]的文章
必应学术
必应学术中相似的文章
[Guimaraes, Bruno V. C.]的文章
[Donato, Sergio L. R.]的文章
[Azevedo, Akinei M.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。