Arid
DOI10.1016/j.rse.2018.04.033
Deriving high-quality surface emissivity spectra from atmospheric infrared sounder data using cumulative distribution function matching and principal component analysis regression
Zhang, Quan1,2; Cheng, Jie1,2,4; Liang, Shunlin1,2,3
通讯作者Cheng, Jie
来源期刊REMOTE SENSING OF ENVIRONMENT
ISSN0034-4257
EISSN1879-0704
出版年2018
卷号211页码:388-399
英文摘要

The Atmospheric Infrared Sounder (AIRS) provides limited hyperspectral thermal infrared (TIR) emissivity data for the retrieval of critical land surface and climate parameters in environmental research. However, the AIRS land surface emissivity (LSE) data lack accuracy, resulting in low-quality data retrieval, particularly for the lower boundary layer. In this study, a practical and effective method is proposed to derive high-accuracy AIRS LSE data and continuous emissivity spectra in the TIR range of 8-14.5 mu m. The AIRS LSE is first rescaled to the Moderate Resolution Imaging Spectroradiometer (MODIS) LSE using cumulative distribution function (CDF) matching, and then the emissivity spectra are recovered from the rescaled AIRS LSE using principal component analysis (PCA) regression. The results show that resealing the AIRS LSE significantly reduced the bias and root mean square (RMS) error in the study area of Africa and the Arabian Peninsula, and PCA regression successfully recovered the emissivity spectra in the 8-14.5 mu m range from the resealed AIRS LSE. At two validation sites in the Namib and Kalahari deserts of southern Africa, the biases of the resealed AIRS LSE at three hinge points are 0.62% and 0.61%, respectively, and the biases of the recovered AIRS LSE spectra in the 8-12 mu m TIR range are 0.53% and 0.56%, respectively. Variations in land cover homogeneity and the accuracy of the MODIS LSE are the critical factors impacting the final accuracy of the rescaled AIRS LSE and the recovered emissivity spectra.


英文关键词Emissivity AIRS MODIS Cumulative distribution function Principal component analysis
类型Article
语种英语
国家Peoples R China ; USA
收录类别SCI-E
WOS记录号WOS:000433650700030
WOS关键词TEMPERATURE ; MODIS ; RETRIEVAL ; ALGORITHM ; PRODUCTS ; SOIL ; AIRS/AMSU/HSB ; VALIDATION ; MISSION ; DESERT
WOS类目Environmental Sciences ; Remote Sensing ; Imaging Science & Photographic Technology
WOS研究方向Environmental Sciences & Ecology ; Remote Sensing ; Imaging Science & Photographic Technology
来源机构北京师范大学
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/212694
作者单位1.Beijing Normal Univ, Fac Geog Sci, State Key Lab Remote Sensing Sci, Beijing 100875, Peoples R China;
2.Beijing Normal Univ, Fac Geog Sci, Inst Remote Sensing Sci & Engn, Beijing 100875, Peoples R China;
3.Univ Maryland, Dept Geog Sci, College Pk, MD 20742 USA;
4.ARS, USDA, Hydrol & Remote Sensing Lab, Beltsville, MD 20705 USA
推荐引用方式
GB/T 7714
Zhang, Quan,Cheng, Jie,Liang, Shunlin. Deriving high-quality surface emissivity spectra from atmospheric infrared sounder data using cumulative distribution function matching and principal component analysis regression[J]. 北京师范大学,2018,211:388-399.
APA Zhang, Quan,Cheng, Jie,&Liang, Shunlin.(2018).Deriving high-quality surface emissivity spectra from atmospheric infrared sounder data using cumulative distribution function matching and principal component analysis regression.REMOTE SENSING OF ENVIRONMENT,211,388-399.
MLA Zhang, Quan,et al."Deriving high-quality surface emissivity spectra from atmospheric infrared sounder data using cumulative distribution function matching and principal component analysis regression".REMOTE SENSING OF ENVIRONMENT 211(2018):388-399.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhang, Quan]的文章
[Cheng, Jie]的文章
[Liang, Shunlin]的文章
百度学术
百度学术中相似的文章
[Zhang, Quan]的文章
[Cheng, Jie]的文章
[Liang, Shunlin]的文章
必应学术
必应学术中相似的文章
[Zhang, Quan]的文章
[Cheng, Jie]的文章
[Liang, Shunlin]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。