Arid
DOI10.3390/rs10040532
Integrating Airborne LiDAR and Optical Data to Estimate Forest Aboveground Biomass in Arid and Semi-Arid Regions of China
Cao, Luodan1; Pan, Jianjun1; Li, Ruijuan1; Li, Jialin2; Li, Zhaofu1
通讯作者Pan, Jianjun
来源期刊REMOTE SENSING
ISSN2072-4292
出版年2018
卷号10期号:4
英文摘要

Forest Aboveground Biomass (AGB) is a key parameter for assessing forest productivity and global carbon content. In previous studies, AGB has been estimated using various prediction methods and types of remote sensing data. Increasingly, there is a trend towards integrating various data sources such as Light Detection and Ranging (LiDAR) and optical data. In this study, we constructed and compared the accuracies of five models for estimating AGB of forests in the upper Heihe River Basin in Northwest China. The five models were constructed using field and remotely-sensed data (optical and LiDAR) and algorithms including Random Forest (RF), Support Vector Machines (SVM), Back Propagation Neural Networks (BPNN), K-Nearest Neighbor (KNN) and the Generalized Linear Mixed Model (GLMM). Models based on the RF algorithm emerged as being the best among the five algorithms irrespective of the datasets used. The Random Forest AGB model, using only LiDAR data (R-2 = 0.899, RMSE -14.0 t/ha) as the input data, was more effective than the one using optical data (R-2 = 0.835, RMSE = 22.724 t/ha). Compared to LiDAR or optical data alone, the AGB model (R-2 = 0.913, RMSE = 13.352 t/ha) that used the RF algorithm and integrated LiDAR and optical data was found to be optimal. Incorporation of terrain variables with optical data resulted in only slight improvements in accuracy. The models developed in this study could be useful for using integrated airborne LiDAR and passive optical data to accurately estimate forest biomass.


英文关键词forest AGB airborne LiDAR prediction model terrain variables
类型Article
语种英语
国家Peoples R China
收录类别SCI-E
WOS记录号WOS:000435187500044
WOS关键词SIMULATION APPROACH ; VEGETATION INDEXES ; HYPERSPECTRAL DATA ; TEMPERATE FORESTS ; CONIFEROUS FOREST ; TROPICAL FOREST ; CARBON STOCKS ; POINT DENSITY ; SAMPLE-SIZE ; AREA
WOS类目Remote Sensing
WOS研究方向Remote Sensing
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/212606
作者单位1.Nanjing Agr Univ, Coll Resources & Environm Sci, Nanjing 210095, Jiangsu, Peoples R China;
2.Ningbo Univ, Dept Geog & Spatial Informat Tech, Ningbo 315211, Zhejiang, Peoples R China
推荐引用方式
GB/T 7714
Cao, Luodan,Pan, Jianjun,Li, Ruijuan,et al. Integrating Airborne LiDAR and Optical Data to Estimate Forest Aboveground Biomass in Arid and Semi-Arid Regions of China[J],2018,10(4).
APA Cao, Luodan,Pan, Jianjun,Li, Ruijuan,Li, Jialin,&Li, Zhaofu.(2018).Integrating Airborne LiDAR and Optical Data to Estimate Forest Aboveground Biomass in Arid and Semi-Arid Regions of China.REMOTE SENSING,10(4).
MLA Cao, Luodan,et al."Integrating Airborne LiDAR and Optical Data to Estimate Forest Aboveground Biomass in Arid and Semi-Arid Regions of China".REMOTE SENSING 10.4(2018).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Cao, Luodan]的文章
[Pan, Jianjun]的文章
[Li, Ruijuan]的文章
百度学术
百度学术中相似的文章
[Cao, Luodan]的文章
[Pan, Jianjun]的文章
[Li, Ruijuan]的文章
必应学术
必应学术中相似的文章
[Cao, Luodan]的文章
[Pan, Jianjun]的文章
[Li, Ruijuan]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。