Arid
DOI10.1016/j.neuroimage.2018.08.042
Reproducible evaluation of classification methods in Alzheimer’s disease: Framework and application to MRI and PET data
Samper-Gonzalez, Jorge1,2,3,4,5; Burgos, Ninon1,2,3,4,5; Bottani, Simona1,2,3,4,5; Fontanella, Sabrina1,2,3,4,5; Lu, Pascal1,2,3,4,5; Marcoux, Arnaud1,2,3,4,5; Routier, Alexandre1,2,3,4,5; Guillon, Jeremy1,2,3,4,5; Bacci, Michael1,2,3,4,5; Wen, Junhao1,2,3,4,5; Bertrand, Anne1,2,3,4,5,6; Bertin, Hugo7; Habert, Marie-Odile7,8; Durrleman, Stanley1,2,3,4,5; Evgeniou, Theodoros9; Colliot, Olivier1,2,3,4,5,6,10
通讯作者Samper-Gonzalez, Jorge ; Colliot, Olivier
来源期刊NEUROIMAGE
ISSN1053-8119
EISSN1095-9572
出版年2018
卷号183页码:504-521
英文摘要

A large number of papers have introduced novel machine learning and feature extraction methods for automatic classification of Alzheimer’s disease (AD). However, while the vast majority of these works use the public dataset ADNI for evaluation, they are difficult to reproduce because different key components of the validation are often not readily available. These components include selected participants and input data, image preprocessing and cross-validation procedures. The performance of the different approaches is also difficult to compare objectively. In particular, it is often difficult to assess which part of the method (e.g. preprocessing, feature extraction or classification algorithms) provides a real improvement, if any. In the present paper, we propose a framework for reproducible and objective classification experiments in AD using three publicly available datasets (ADNI, AIBL and OASIS). The framework comprises: i) automatic conversion of the three datasets into a standard format ( BIDS); ii) a modular set of preprocessing pipelines, feature extraction and classification methods, together with an evaluation framework, that provide a baseline for benchmarking the different components. We demonstrate the use of the framework for a large-scale evaluation on 1960 participants using T1 MRI and FDG PET data. In this evaluation, we assess the influence of different modalities, preprocessing, feature types (regional or voxel-based features), classifiers, training set sizes and datasets. Performances were in line with the state-of-the-art. FDG PET outperformed T1 MRI for all classification tasks. No difference in performance was found for the use of different atlases, image smoothing, partial volume correction of FDG PET images, or feature type. Linear SVM and L2-logistic regression resulted in similar performance and both outperformed random forests. The classification performance increased along with the number of subjects used for training. Classifiers trained on ADNI generalized well to AIBL and OASIS. All the code of the framework and the experiments is publicly available: general-purpose tools have been integrated into the Clinica software (www.clinica.run) and the paper-specific code is available at: https://gitlab.icm-institute.org/aramislab/AD-ML.


英文关键词Classification Reproducibility Alzheimer’s disease Magnetic resonance imaging Positron emission tomography Open-source
类型Article
语种英语
国家France
收录类别SCI-E
WOS记录号WOS:000447750200044
WOS关键词MILD COGNITIVE IMPAIRMENT ; POSITRON-EMISSION-TOMOGRAPHY ; NEUROIMAGING INITIATIVE ADNI ; ASSOCIATION WORKGROUPS ; DIAGNOSTIC GUIDELINES ; NATIONAL INSTITUTE ; FEATURE-SELECTION ; STRUCTURAL MRI ; BRAIN MRI ; CORTICAL THICKNESS
WOS类目Neurosciences ; Neuroimaging ; Radiology, Nuclear Medicine & Medical Imaging
WOS研究方向Neurosciences & Neurology ; Radiology, Nuclear Medicine & Medical Imaging
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/211827
作者单位1.INRIA, ARAMIS Project Team, F-75013 Paris, France;
2.Inst Cerveau & Moelle Epiniere, F-75013 Paris, France;
3.INSERM, U1127, F-75013 Paris, France;
4.CNRS, UMR 7225, F-75013 Paris, France;
5.Sorbonne Univ, F-75013 Paris, France;
6.Hop La Pitie Salpetriere, AP HP, Dept Neuroradiol, Paris, France;
7.Sorbonne Univ, CNRS, INSERM, Lab Imagerie Biomed,U 1146,UMR 737, F-75013 Paris, France;
8.Hop La Pitie Salpetriere, AP HP, Dept Nucl Med, Paris, France;
9.INSEAD, Bd Constance, F-77305 Fontainebleau, France;
10.Hop La Pitie Salpetriere, AP HP, Dept Neurol, Paris, France
推荐引用方式
GB/T 7714
Samper-Gonzalez, Jorge,Burgos, Ninon,Bottani, Simona,等. Reproducible evaluation of classification methods in Alzheimer’s disease: Framework and application to MRI and PET data[J],2018,183:504-521.
APA Samper-Gonzalez, Jorge.,Burgos, Ninon.,Bottani, Simona.,Fontanella, Sabrina.,Lu, Pascal.,...&Colliot, Olivier.(2018).Reproducible evaluation of classification methods in Alzheimer’s disease: Framework and application to MRI and PET data.NEUROIMAGE,183,504-521.
MLA Samper-Gonzalez, Jorge,et al."Reproducible evaluation of classification methods in Alzheimer’s disease: Framework and application to MRI and PET data".NEUROIMAGE 183(2018):504-521.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Samper-Gonzalez, Jorge]的文章
[Burgos, Ninon]的文章
[Bottani, Simona]的文章
百度学术
百度学术中相似的文章
[Samper-Gonzalez, Jorge]的文章
[Burgos, Ninon]的文章
[Bottani, Simona]的文章
必应学术
必应学术中相似的文章
[Samper-Gonzalez, Jorge]的文章
[Burgos, Ninon]的文章
[Bottani, Simona]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。