Arid
DOI10.1007/s10115-017-1102-9
Reducing uncertainties in land cover change models using sensitivity analysis
Ferchichi, Ahlem1; Boulila, Wadii1,2; Farah, Imed Riadh1,2
通讯作者Ferchichi, Ahlem
来源期刊KNOWLEDGE AND INFORMATION SYSTEMS
ISSN0219-1377
EISSN0219-3116
出版年2018
卷号55期号:3页码:719-740
英文摘要

Land cover change (LCC) models aim to track spatiotemporal changes made in land cover. In most cases, LCC models contain uncertainties in their main components (i.e., input parameters and model structure). These uncertainties propagate through the modeling system, which generates uncertainties in the model outputs. The aim of this manuscript is to propose an approach to reduce uncertainty of LCC prediction models. The main objective of the proposed approach is to apply a sensitivity analysis method, based on belief function theory, to determine parameters and structures that have a high contribution in the variability of the predictions of the LCC model. Our approach is applied to four common LCC models (i.e., DINAMICA, SLEUTH, CA-MARKOV, and LCM). Results show that uncertainty of the model parameters and structure has meaningful impacts on the final decisions of LCC models. Ignoring this uncertainty can lead to erroneous decision about land changes. Therefore, the presented approach is very useful to identify the most relevant uncertainty sources that need to be processed to improve the accuracy of LCC models. The applicability and effectiveness of the proposed approach are demonstrated through a case study based on the Cairo region. Results show that 13% of the agriculture and 3.8% of the desert lands in 2014 would be converted to urban areas in 2025.


英文关键词LCC prediction models Input parameters uncertainty Model structure uncertainty Belief function theory Sensitivity analysis Estimation
类型Article
语种英语
国家Tunisia ; France
收录类别SCI-E ; SSCI
WOS记录号WOS:000429480500007
WOS关键词CELLULAR-AUTOMATA ; URBAN-GROWTH ; SIMULATION ; GIS ; KNOWLEDGE ; DYNAMICS ; PATTERN ; IMAGES ; RISK
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Information Systems
WOS研究方向Computer Science
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/211452
作者单位1.Univ Manouba, Natl Sch Comp Sci, RIADI Lab, Manouba, Tunisia;
2.TELECOM Bretagne, ITI Dept, Brest, France
推荐引用方式
GB/T 7714
Ferchichi, Ahlem,Boulila, Wadii,Farah, Imed Riadh. Reducing uncertainties in land cover change models using sensitivity analysis[J],2018,55(3):719-740.
APA Ferchichi, Ahlem,Boulila, Wadii,&Farah, Imed Riadh.(2018).Reducing uncertainties in land cover change models using sensitivity analysis.KNOWLEDGE AND INFORMATION SYSTEMS,55(3),719-740.
MLA Ferchichi, Ahlem,et al."Reducing uncertainties in land cover change models using sensitivity analysis".KNOWLEDGE AND INFORMATION SYSTEMS 55.3(2018):719-740.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Ferchichi, Ahlem]的文章
[Boulila, Wadii]的文章
[Farah, Imed Riadh]的文章
百度学术
百度学术中相似的文章
[Ferchichi, Ahlem]的文章
[Boulila, Wadii]的文章
[Farah, Imed Riadh]的文章
必应学术
必应学术中相似的文章
[Ferchichi, Ahlem]的文章
[Boulila, Wadii]的文章
[Farah, Imed Riadh]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。