Arid
DOI10.1166/jmihi.2018.2381
Alzheimer’s Disease Detection Using Extreme Learning Machine, Complex Dual Tree Wavelet Principal Coefficients and Linear Discriminant Analysis
Jha, Debesh1; Alam, Saruar1; Pyun, Jae-Young1; Lee, Kun Ho2,3; Kwon, Goo-Rak1
通讯作者Kwon, Goo-Rak
来源期刊JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS
ISSN2156-7018
EISSN2156-7026
出版年2018
卷号8期号:5页码:881-890
英文摘要

The early detection and classification of Alzheimer’s disease (AD) are important clinical support tasks for medical practitioners in customizing patient treatment programs to have better manage the development and progression of these diseases. Efforts are being made to diagnose these neurodegenerative disorders in the early stages. Efficient early categorization of the AD and mild Cognitive Impairment (MCI) from HC is necessary as prompt preventive care could assist to mitigate risk factors. For analysis and prognosis of disease, Magnetic resonance imaging (MRI). In this paper, we proposed a novel computer-aided diagnosis (CAD) cascade model to discriminate patients with the AD from healthy controls using dual-tree complex wavelet transforms (DTCWT), principal component analysis, linear discriminant analysis, and extreme learning machine (ELM). The proposed method obtained accuracy of 90.26 +/- 1.17, a specificity of 90.20 +/- 1.56 and sensitivity of 90.27 +/- 1.29 on the Alzheimer’s disease Neuroimaging Initiative (ADNI) dataset and accuracy of 95.72 +/- 1.54, a sensitivity of 96.59 +/- 2.34 and specificity of 93.03 +/- 1.67 on the Open Access Series of Imaging Studies (OASIS) dataset. The proposed method is effective and superior to the existing models.


英文关键词Alzheimer’s Disease Computer-Aided Diagnosis Dual-Tree Complex Wavelet Transform Principal Component Analysis Linear Discriminant Analysis Extreme Learning Machine Alzheimer’s Disease Neuroimaging Initiative Open Access Series of Imaging Studies
类型Article
语种英语
国家South Korea
收录类别SCI-E
WOS记录号WOS:000434985100003
WOS关键词SUPPORT VECTOR MACHINE ; MILD COGNITIVE IMPAIRMENT ; CLASS IMBALANCE ; CLASSIFICATION ; BRAIN ; PREDICTION ; DIAGNOSIS ; SCANS ; MRI
WOS类目Mathematical & Computational Biology ; Radiology, Nuclear Medicine & Medical Imaging
WOS研究方向Mathematical & Computational Biology ; Radiology, Nuclear Medicine & Medical Imaging
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/211162
作者单位1.Chosun Univ, Dept Informat & Commun Engn, 375 Seosuk Dong, Gwangju 501759, South Korea;
2.Chosun Univ, Natl Res Ctr Dementia, 375 Seosuk Dong, Gwangju 501759, South Korea;
3.Chosun Univ, Dept Biomed Sci, 375 Seosuk Dong, Gwangju 501759, South Korea
推荐引用方式
GB/T 7714
Jha, Debesh,Alam, Saruar,Pyun, Jae-Young,等. Alzheimer’s Disease Detection Using Extreme Learning Machine, Complex Dual Tree Wavelet Principal Coefficients and Linear Discriminant Analysis[J],2018,8(5):881-890.
APA Jha, Debesh,Alam, Saruar,Pyun, Jae-Young,Lee, Kun Ho,&Kwon, Goo-Rak.(2018).Alzheimer’s Disease Detection Using Extreme Learning Machine, Complex Dual Tree Wavelet Principal Coefficients and Linear Discriminant Analysis.JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS,8(5),881-890.
MLA Jha, Debesh,et al."Alzheimer’s Disease Detection Using Extreme Learning Machine, Complex Dual Tree Wavelet Principal Coefficients and Linear Discriminant Analysis".JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS 8.5(2018):881-890.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Jha, Debesh]的文章
[Alam, Saruar]的文章
[Pyun, Jae-Young]的文章
百度学术
百度学术中相似的文章
[Jha, Debesh]的文章
[Alam, Saruar]的文章
[Pyun, Jae-Young]的文章
必应学术
必应学术中相似的文章
[Jha, Debesh]的文章
[Alam, Saruar]的文章
[Pyun, Jae-Young]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。