Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.1111/1365-2745.12871 |
Soil fungal abundance and plant functional traits drive fertile island formation in global drylands | |
Ochoa-Hueso, Raul1; Eldridge, David J.2; Delgado-Baquerizo, Manuel3,4; Soliveres, Santiago5; Bowker, Matthew A.6; Gross, Nicolas4,7,8; Le Bagousse-Pinguet, Yoann4; Quero, Jose L.9; Garcia-Gomez, Miguel4; Valencia, Enrique4; Arredondo, Tulio10; Beinticinco, Laura11; Bran, Donaldo12; Cea, Alex13; Coaguila, Daniel14; Dougill, Andrew J.15; Espinosa, Carlos I.16; Gaitan, Juan17; Guuroh, Reginald T.18,19; Guzman, Elizabeth16; Gutierrez, Julio R.13,20,21; Hernandez, Rosa M.22; Huber-Sannwald, Elisabeth10; Jeffries, Thomas23; Linstaedter, Anja18; Mau, Rebecca L.24; Monerris, Jorge25; Prina, Anibal11; Pucheta, Eduardo26; Stavi, Ilan27; Thomas, Andrew D.28; Zaady, Eli29; Singh, Brajesh K.23,30; Maestre, Fernando T.4 | |
通讯作者 | Ochoa-Hueso, Raul |
来源期刊 | JOURNAL OF ECOLOGY
![]() |
ISSN | 0022-0477 |
EISSN | 1365-2745 |
出版年 | 2018 |
卷号 | 106期号:1页码:242-253 |
英文摘要 | Dryland vegetation is characterized by discrete plant patches that accumulate and capture soil resources under their canopies. These fertile islands are major drivers of dryland ecosystem structure and functioning, yet we lack an integrated understanding of the factors controlling their magnitude and variability at the global scale. We conducted a standardized field survey across 236 drylands from five continents. At each site, we measured the composition, diversity and cover of perennial plants. Fertile island effects were estimated at each site by comparing composite soil samples obtained under the canopy of the dominant plants and in open areas devoid of perennial vegetation. For each sample, we measured 15 soil variables (functions) associated with carbon, nitrogen and phosphorus cycling and used the relative interaction index to quantify the magnitude of the fertile island effect for each function. In 80 sites, we also measured fungal and bacterial abundance (quantitative PCR) and diversity (Illumina MiSeq). The most fertile islands, i.e. those where a higher number of functions were simultaneously enhanced, were found at lower elevation sites with greater soil pH values and sand content under semiarid climates, particularly at locations where the presence of tall woody species with a low-specific leaf area increased fungal abundance beneath plant canopies, the main direct biotic controller of the fertile island effect in the drylands studied. Positive effects of fungal abundance were particularly associated with greater nutrient contents and microbial activity (soil extracellular enzymes) under plant canopies.Synthesis. Our results show that the formation of fertile islands in global drylands largely depends on: (1) local climatic, topographic and edaphic characteristics, (2) the structure and traits of local plant communities and (3) soil microbial communities. Our study also has broad implications for the management and restoration of dryland ecosystems worldwide, where woody plants are commonly used as nurse plants to enhance the establishment and survival of beneficiary species. Finally, our results suggest that forecasted increases in aridity may enhance the formation of fertile islands in drylands worldwide. |
英文关键词 | aridity drylands fertile islands fungal abundance multiple threshold approach plant functional traits relative interaction index soil properties |
类型 | Article |
语种 | 英语 |
国家 | Spain ; Australia ; USA ; Switzerland ; France ; Mexico ; Argentina ; Chile ; Brazil ; England ; Ecuador ; Germany ; Ghana ; Venezuela ; Canada ; Israel ; Wales |
收录类别 | SCI-E |
WOS记录号 | WOS:000417839700020 |
WOS关键词 | ECOSYSTEM MULTIFUNCTIONALITY ; LITTER DECOMPOSITION ; ORGANIC-MATTER ; PULSE DYNAMICS ; RESPONSES ; DIVERSITY ; IMPACTS ; CLIMATE ; CRUSTS ; DESERT |
WOS类目 | Plant Sciences ; Ecology |
WOS研究方向 | Plant Sciences ; Environmental Sciences & Ecology |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/210820 |
作者单位 | 1.Autonomous Univ Madrid, Dept Ecol, Madrid, Spain; 2.Univ New South Wales, Sch Biol Earth & Environm Sci, Sydney, NSW, Australia; 3.Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA; 4.Univ Rey Juan Carlos, Dept Biol & Geol, Escuela Super Ciencias Expt & Tecnol, Fis & Quim Inorgan, Mostoles, Spain; 5.Univ Bern, Inst Plant Sci, Bern, Switzerland; 6.No Arizona Univ, Sch Forestry, Flagstaff, AZ USA; 7.INRA, Chize CEBC USC1339, Villiers En Bois, France; 8.CNRS Univ La Rochelle UMR 7372, Ctr Etud Biol Chize, Villiers En Bois, France; 9.Univ Cordoba, Dept Ingn Forestal, Escuela Tecn Super Ingn Agron & Montes, Cordoba, Spain; 10.Inst Potosino Invest Cient & Tecnol, Div Ciencias Ambientales, San Luis Potosi, Mexico; 11.Univ Nacl La Pampa, Fac Agron, Santa Rosa, La Pampa, Argentina; 12.Inst Nacl Tecnol Agr, Estn Expt San Carlos Bariloche, San Carlos De Bariloche, Rio Negro, Argentina; 13.Univ La Serena, Dept Biol, La Serena, Chile; 14.Inst Ensino Super Rio Verde, Rio Verde, Brazil; 15.Univ Leeds, Sch Earth & Environm, Leeds, W Yorkshire, England; 16.Univ Tecn Particular Loja, Dept Ciencias Nat, Loja, Ecuador; 17.INTA, Inst Suelos, CIRN, Nicolas Repetto & Reseros Sin Numero, Buenos Aires, DF, Argentina; 18.Univ Cologne, Range Ecol & Range Management Grp, Inst Bot, Cologne, Germany; 19.KNUST, CSIR Forestry Res Inst Ghana, Kumasi, Ghana; 20.CEAZA, La Serena, Chile; 21.IEB, Santiago, Chile; 22.Univ Expt Simon Rodriguez, Lab Biogeoquim, Ctr Agroecol Trop, Caracas, Venezuela; 23.Western Sydney Univ, Hawkesbury Inst Environm, Penrith, NSW, Australia; 24.No Arizona Univ, Ctr Ecosyst Sci & Soc, Flagstaff, AZ USA; 25.Univ Quebec, Dept Sci Biol, Pavillon Sci Biol, Montreal, PQ, Canada; 26.Univ Nacl San Juan, Dept Biol, Fac Ciencias Exactas Fis & Nat, San Juan, Argentina; 27.Dead Sea & Arava Sci Ctr, Yotvata, Israel; 28.Aberystwyth Univ, Dept Geog & Earth Sci, Aberystwyth, Dyfed, Wales; 29.Agr Res Org, Nat Resources, Gilat Res Ctr, Negev, Israel; 30.Western Sydney Univ, Global Ctr Land Based Innovat, Penrith, NSW, Australia |
推荐引用方式 GB/T 7714 | Ochoa-Hueso, Raul,Eldridge, David J.,Delgado-Baquerizo, Manuel,et al. Soil fungal abundance and plant functional traits drive fertile island formation in global drylands[J],2018,106(1):242-253. |
APA | Ochoa-Hueso, Raul.,Eldridge, David J..,Delgado-Baquerizo, Manuel.,Soliveres, Santiago.,Bowker, Matthew A..,...&Maestre, Fernando T..(2018).Soil fungal abundance and plant functional traits drive fertile island formation in global drylands.JOURNAL OF ECOLOGY,106(1),242-253. |
MLA | Ochoa-Hueso, Raul,et al."Soil fungal abundance and plant functional traits drive fertile island formation in global drylands".JOURNAL OF ECOLOGY 106.1(2018):242-253. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。