Arid
DOI10.1007/s12040-018-0919-2
Semi-empirical model for retrieval of soil moisture using RISAT-1 C-Band SAR data over a sub-tropical semi-arid area of Rewari district, Haryana (India)
Rawat, Kishan Singh1,2; Sehgal, Vinay Kumar1; Pradhan, Sanatan1; Ray, Shibendu S.3
通讯作者Rawat, Kishan Singh
来源期刊JOURNAL OF EARTH SYSTEM SCIENCE
ISSN2347-4327
EISSN0973-774X
出版年2018
卷号127期号:2
英文摘要

We have estimated soil moisture (SM) by using circular horizontal polarization backscattering coefficient (so RH), differences of circular vertical and horizontal sigma(o) (sigma(o)(RV)-sigma(o)(RH)) from FRS-1 data of Radar Imaging Satellite (RISAT-1) and surface roughness in terms of RMS height (RMSheight). We examined the performance of FRS-1 in retrieving SM under wheat crop at tillering stage. Results revealed that it is possible to develop a good semi-empirical model (SEM) to estimate SM of the upper soil layer using RISAT-1 SAR data rather than using existing empirical model based on only single parameter, i. e., sigma(o). Near surface SM measurements were related to sigma(o)(RH), sigma(o)(RV)-sigma(o)(RH) derived using 5.35 GHz (C-band) image of RISAT-1 and RMSheight. The roughness component derived in terms of RMSheight showed a good positive correlation with sigma(o)(RV)-sigma(o)(RH) (R-2 = 0.65). By considering all the major influencing factors (sigma(o)(RH), sigma(o)(RV)-sigma(o)(RH), and RMSheight), an SEM was developed where SM (volumetric) predicted values depend on sigma(o)(RH), so RV-sigma(o)(RH), and RMSheight. This SEM showed R-2 of 0.87 and adjusted R-2 of 0.85, multiple R=0.94 and with standard error of 0.05 at 95% confidence level. Validation of the SM derived from semi-empirical model with observed measurement (SMObserved) showed root mean square error (RMSE) = 0.06, relative RMSE (R-RMSE) = 0.18, mean absolute error (MAE) = 0.04, normalized RMSE (NRMSE) = 0.17, Nash-Sutcliffe efficiency (NSE) = 0.91 (approximate to 1), index of agreement (d) = 1, coefficient of determination (R-2) = 0.87, mean bias error (MBE) = 0.04, standard error of estimate (SEE) = 0.10, volume error (VE) = 0.15, variance of the distribution of differences (S-d(2)) = 0.004. The developed SEM showed better performance in estimating SM than Topp empirical model which is based only on sigma(o). By using the developed SEM, top soil SM can be estimated with low mean absolute percent error (MAPE) = 1.39 and can be used for operational applications.


英文关键词Soil moisture SAR RISAT-1 TDR semi-empirical model
类型Article
语种英语
国家India
收录类别SCI-E
WOS记录号WOS:000428310600005
WOS关键词WATER-CONTENT ; ROUGHNESS ; TEXTURE
WOS类目Geosciences, Multidisciplinary ; Multidisciplinary Sciences
WOS研究方向Geology ; Science & Technology - Other Topics
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/210815
作者单位1.Indian Agr Res Inst, Div Agr Phys, New Delhi 110012, India;
2.Sathyabama Univ, Ctr Remote Sensing & Geoinformat, Madras 600119, Tamil Nadu, India;
3.Mahalanobis Natl Crop Forecast Ctr, Pusa Campus, New Delhi 110012, India
推荐引用方式
GB/T 7714
Rawat, Kishan Singh,Sehgal, Vinay Kumar,Pradhan, Sanatan,et al. Semi-empirical model for retrieval of soil moisture using RISAT-1 C-Band SAR data over a sub-tropical semi-arid area of Rewari district, Haryana (India)[J],2018,127(2).
APA Rawat, Kishan Singh,Sehgal, Vinay Kumar,Pradhan, Sanatan,&Ray, Shibendu S..(2018).Semi-empirical model for retrieval of soil moisture using RISAT-1 C-Band SAR data over a sub-tropical semi-arid area of Rewari district, Haryana (India).JOURNAL OF EARTH SYSTEM SCIENCE,127(2).
MLA Rawat, Kishan Singh,et al."Semi-empirical model for retrieval of soil moisture using RISAT-1 C-Band SAR data over a sub-tropical semi-arid area of Rewari district, Haryana (India)".JOURNAL OF EARTH SYSTEM SCIENCE 127.2(2018).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Rawat, Kishan Singh]的文章
[Sehgal, Vinay Kumar]的文章
[Pradhan, Sanatan]的文章
百度学术
百度学术中相似的文章
[Rawat, Kishan Singh]的文章
[Sehgal, Vinay Kumar]的文章
[Pradhan, Sanatan]的文章
必应学术
必应学术中相似的文章
[Rawat, Kishan Singh]的文章
[Sehgal, Vinay Kumar]的文章
[Pradhan, Sanatan]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。