Arid
DOI10.1016/j.jclepro.2018.08.006
Multi-step ahead forecasting of daily global and direct solar radiation: A review and case study of Ghardaia region
Guermoui, Mawloud1; Melgani, Farid2; Danilo, Celine2
通讯作者Guermoui, Mawloud
来源期刊JOURNAL OF CLEANER PRODUCTION
ISSN0959-6526
EISSN1879-1786
出版年2018
卷号201页码:716-734
英文摘要

Accurate estimation of solar radiation components of a specific location has been one of the most important issues of solar energy applications. In this paper, a new approach, named Weighted Gaussian Process Regression (WGPR), is developed for multi-step ahead forecasting of daily global and direct horizontal solar radiation components in Saharan climate. The WGPR is tested using global and direct solar radiation data recorded over three years (2013-2015) in a semi-arid region in Algeria. It consists of forecasting 10-steps ahead for both components with automatic selection of relevant climatic data. In this respect two different architectures of WGPR are proposed, WGPR Parallel Forecasting Architecture (WGPR-PFA) and WGPR Cascade Forecasting Architecture (WGPR-CFA). The proposed approach proved to be effective with respect to the basic GPR in terms of accuracy and processing time for daily global and direct solar radiation forecasting. Forecasting with WGPR-CFA led to error RMSE = 3.18 (MJ/m(2)) and correlation coefficient r(2) = 85.85 (%) for the 10th daily global horizontal radiation, and RMSE = 5.23 (MJ/m(2)) and correlation coefficient r(2) = 56.21(%) for 10th daily direct horizontal radiation. The achieved results specify that the developed WGPR approach can be adjudged as an efficient machine learning model for accurate forecasting of solar radiation components. (C) 2018 Elsevier Ltd. All rights reserved.


英文关键词Solar resource estimation Forecasting Global solar radiation Direct solar radiation Gaussian process regression
类型Review
语种英语
国家Algeria ; Italy
收录类别SCI-E
WOS记录号WOS:000445981200062
WOS关键词SUPPORT VECTOR MACHINE ; ARTIFICIAL NEURAL-NETWORK ; PARTICLE SWARM OPTIMIZATION ; EXTREME LEARNING-MACHINE ; HYBRID MODEL ; MULTIOBJECTIVE OPTIMIZATION ; GENERATING SEQUENCES ; DIFFUSE ; IRRADIANCE ; PREDICTION
WOS类目Green & Sustainable Science & Technology ; Engineering, Environmental ; Environmental Sciences
WOS研究方向Science & Technology - Other Topics ; Engineering ; Environmental Sciences & Ecology
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/210757
作者单位1.Ctr Dev Energies Renouvelables, Unite Rech Appl Energies Renouvelables, Ghardaia 47133, Algeria;
2.Univ Trento, Dept Informat Engn & Comp Sci, Via Sommar 9, I-38123 Trento, Italy
推荐引用方式
GB/T 7714
Guermoui, Mawloud,Melgani, Farid,Danilo, Celine. Multi-step ahead forecasting of daily global and direct solar radiation: A review and case study of Ghardaia region[J],2018,201:716-734.
APA Guermoui, Mawloud,Melgani, Farid,&Danilo, Celine.(2018).Multi-step ahead forecasting of daily global and direct solar radiation: A review and case study of Ghardaia region.JOURNAL OF CLEANER PRODUCTION,201,716-734.
MLA Guermoui, Mawloud,et al."Multi-step ahead forecasting of daily global and direct solar radiation: A review and case study of Ghardaia region".JOURNAL OF CLEANER PRODUCTION 201(2018):716-734.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Guermoui, Mawloud]的文章
[Melgani, Farid]的文章
[Danilo, Celine]的文章
百度学术
百度学术中相似的文章
[Guermoui, Mawloud]的文章
[Melgani, Farid]的文章
[Danilo, Celine]的文章
必应学术
必应学术中相似的文章
[Guermoui, Mawloud]的文章
[Melgani, Farid]的文章
[Danilo, Celine]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。