Arid
DOI10.1016/j.jag.2018.06.006
Quad-PolSAR data classification using modified random forest algorithms to map halophytic plants in arid areas
Samat, Alim1,2; Gamba, Paolo3; Liu, Sicong4; Miao, Zelang5; Li, Erzhu6; Abuduwaili, Jilili1,2,7
通讯作者Samat, Alim
来源期刊INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION
ISSN0303-2434
出版年2018
卷号73页码:503-521
英文摘要

In this work, fully polarized SAR (PolSAR) data are exploited to characterize halophyte plants in lakeside saline wetland environments thanks to their different scattering properties. To this aim, several polarization signatures and morphological profiles (MPs) are used as inputs to the proposed "random MS model forest" (RM5MF) and "classification via random forest regression" (CVRFR) classifiers. The experimental results show that parameters such as pedestal height (PH), as well as 3D co-polarization and cross-polarization signature plots, are more suited than biomass index (BMI), volume scattering index (VSI), and canopy scattering index (CSI) to map halophytic plants in arid environments. When we compare the suitability of PolSAR features using RM5MF, random forest (RaF), and other five popular attribute selection approaches, all the results uniformly show that span, MPs and entropy are the most valuable features, while PH and BMI are more valuable than CSI, VSI and the radar forest degradation index (RFDI). Additionally, the diagonal elements of the coherency matrix are more valuable than are the off-diagonal elements, and double-bounce, odd-bounce and wire elements are more valuable than helix bounce and volume bounce. The study results are obtained from Po1SAR L-band quad-polarimetric high-sensitivity stripmap data over two study regions by comparing RM5MF and CVRFR with more traditional algorithms (support vector machine (SVM), RaF, rotation forest (RoF), and MultiBoostAB). The RMSMF model achieves the highest accuracy value in the study regions. However, due to the binary splitting criteria in the M5 model tree, it is more computationally intensive than all the others. In contrast, the CVRFR model consumes much less time-approximately 10 times less than RMSMF, and 5 times less than RoF-but still achieves better (3%-8%) classification accuracy than SVM or RoF, and its results are comparable (less than 1% difference) to those by RaF.


英文关键词Polarization signature Random M5 model forest Classification via random forest regression Halophytic plants ALOS-2 PolSAR image classification
类型Article
语种英语
国家Peoples R China ; Italy
收录类别SCI-E
WOS记录号WOS:000446291100044
WOS关键词POLARIMETRIC SAR DATA ; EXTREME LEARNING MACHINES ; LAND-COVER CLASSIFICATION ; TARGET DECOMPOSITION-THEOREMS ; ESTIMATING SOIL-SALINITY ; SUPPORT VECTOR MACHINE ; SALT-AFFECTED SOILS ; SCATTERING MODEL ; UNSUPERVISED CLASSIFICATION ; IMAGE CLASSIFICATION
WOS类目Remote Sensing
WOS研究方向Remote Sensing
来源机构中国科学院新疆生态与地理研究所
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/210137
作者单位1.Chinese Acad Sci, Xinjiang Inst Ecol & Geog, State Key Lab Desert & Oasis Ecol, Urumqi, Peoples R China;
2.CAS Res Ctr Ecol & Environm Cent Asia, Urumqi, Peoples R China;
3.Univ Pavia, Dept Elect Comp & Biomed Engn, Pavia, Italy;
4.Tongji Univ, Coll Surveying & Geoinformat, Shanghai, Peoples R China;
5.Cent S Univ, Sch Geosci & Infophys, Changsha, Hunan, Peoples R China;
6.Jiangsu Normal Univ, Sch Geog Geomat & Planning, Xuzhou, Jiangsu, Peoples R China;
7.Univ Chinese Acad Sci, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Samat, Alim,Gamba, Paolo,Liu, Sicong,et al. Quad-PolSAR data classification using modified random forest algorithms to map halophytic plants in arid areas[J]. 中国科学院新疆生态与地理研究所,2018,73:503-521.
APA Samat, Alim,Gamba, Paolo,Liu, Sicong,Miao, Zelang,Li, Erzhu,&Abuduwaili, Jilili.(2018).Quad-PolSAR data classification using modified random forest algorithms to map halophytic plants in arid areas.INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION,73,503-521.
MLA Samat, Alim,et al."Quad-PolSAR data classification using modified random forest algorithms to map halophytic plants in arid areas".INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION 73(2018):503-521.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Samat, Alim]的文章
[Gamba, Paolo]的文章
[Liu, Sicong]的文章
百度学术
百度学术中相似的文章
[Samat, Alim]的文章
[Gamba, Paolo]的文章
[Liu, Sicong]的文章
必应学术
必应学术中相似的文章
[Samat, Alim]的文章
[Gamba, Paolo]的文章
[Liu, Sicong]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。