Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.1080/10106049.2016.1232438 |
Estimation of forest aboveground biomass from HJ1B imagery using a canopy reflectance model and a forest growth model | |
Wang, Xinyun1,2; Guo, Yige1,2; He, Jie3; Du, Lingtong1,2; Hu, Tianhua4 | |
通讯作者 | Wang, Xinyun |
来源期刊 | GEOCARTO INTERNATIONAL
![]() |
ISSN | 1010-6049 |
EISSN | 1752-0762 |
出版年 | 2018 |
卷号 | 33期号:2页码:148-162 |
英文摘要 | Accurately estimating the spatial distribution of forest aboveground biomass (AGB) is important because of its carbon budget forms part of the global carbon cycle. This paper presented three methods for obtaining forest AGB based on a forest growth model, a Multiple-Forward-Mode (MFM) method and a stochastic gradient boosting (SGB) model. A Li-Strahler geometricoptical canopy reflectance model (GOMS) with the ZELIG forest growth model was run using HJ1B imagery to derive forest AGB. GOMS-ZELIG simulated data were used to train the SGB model and AGB estimation. The GOMS-ZELIG AGB estimation was evaluated for 24 field-measured data and compared against the GOMS-SGB model and GOMS-MFM biomass predictions from multispectral HJ1B data. The results show that the estimation accuracy of the GOMS-MFM model is slightly higher than that of the GOMS-SGB model. The GOMS-ZELIG and GOMS-MFM models are considerably more accurate at estimating forest AGB in arid and semiarid regions. |
英文关键词 | Forest aboveground biomass (AGB) HJ1B canopy reflectance model ZELIG model stochastic gradient boosting model (SGB) |
类型 | Article |
语种 | 英语 |
国家 | Peoples R China |
收录类别 | SCI-E |
WOS记录号 | WOS:000427850900003 |
WOS关键词 | LEAF-AREA INDEX ; RADIATIVE-TRANSFER MODELS ; SPECTRAL MIXTURE ANALYSIS ; TOPOGRAPHIC CORRECTION ; ALOS PALSAR ; GAP MODEL ; ETM+ DATA ; INVERSION ; LANDSAT ; CLASSIFICATION |
WOS类目 | Environmental Sciences ; Geosciences, Multidisciplinary ; Remote Sensing ; Imaging Science & Photographic Technology |
WOS研究方向 | Environmental Sciences & Ecology ; Geology ; Remote Sensing ; Imaging Science & Photographic Technology |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/209541 |
作者单位 | 1.Ningxia Univ, State Key Lab Breeding Base Land Degradat & Ecol, Yinchuan, Peoples R China; 2.Ningxia Univ, Minist Educ, Key Lab Restorat & Reconstruct Degraded Ecosyst N, Yinchuan, Peoples R China; 3.Ningxia Univ, Sch Resources & Environm, Yinchuan, Peoples R China; 4.Helan Mt Natl Nat Reserve Adm, Forest Ecosyst Res Stn, Yinchuan, Peoples R China |
推荐引用方式 GB/T 7714 | Wang, Xinyun,Guo, Yige,He, Jie,et al. Estimation of forest aboveground biomass from HJ1B imagery using a canopy reflectance model and a forest growth model[J],2018,33(2):148-162. |
APA | Wang, Xinyun,Guo, Yige,He, Jie,Du, Lingtong,&Hu, Tianhua.(2018).Estimation of forest aboveground biomass from HJ1B imagery using a canopy reflectance model and a forest growth model.GEOCARTO INTERNATIONAL,33(2),148-162. |
MLA | Wang, Xinyun,et al."Estimation of forest aboveground biomass from HJ1B imagery using a canopy reflectance model and a forest growth model".GEOCARTO INTERNATIONAL 33.2(2018):148-162. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。