Arid
DOI10.1080/10106049.2016.1232438
Estimation of forest aboveground biomass from HJ1B imagery using a canopy reflectance model and a forest growth model
Wang, Xinyun1,2; Guo, Yige1,2; He, Jie3; Du, Lingtong1,2; Hu, Tianhua4
通讯作者Wang, Xinyun
来源期刊GEOCARTO INTERNATIONAL
ISSN1010-6049
EISSN1752-0762
出版年2018
卷号33期号:2页码:148-162
英文摘要

Accurately estimating the spatial distribution of forest aboveground biomass (AGB) is important because of its carbon budget forms part of the global carbon cycle. This paper presented three methods for obtaining forest AGB based on a forest growth model, a Multiple-Forward-Mode (MFM) method and a stochastic gradient boosting (SGB) model. A Li-Strahler geometricoptical canopy reflectance model (GOMS) with the ZELIG forest growth model was run using HJ1B imagery to derive forest AGB. GOMS-ZELIG simulated data were used to train the SGB model and AGB estimation. The GOMS-ZELIG AGB estimation was evaluated for 24 field-measured data and compared against the GOMS-SGB model and GOMS-MFM biomass predictions from multispectral HJ1B data. The results show that the estimation accuracy of the GOMS-MFM model is slightly higher than that of the GOMS-SGB model. The GOMS-ZELIG and GOMS-MFM models are considerably more accurate at estimating forest AGB in arid and semiarid regions.


英文关键词Forest aboveground biomass (AGB) HJ1B canopy reflectance model ZELIG model stochastic gradient boosting model (SGB)
类型Article
语种英语
国家Peoples R China
收录类别SCI-E
WOS记录号WOS:000427850900003
WOS关键词LEAF-AREA INDEX ; RADIATIVE-TRANSFER MODELS ; SPECTRAL MIXTURE ANALYSIS ; TOPOGRAPHIC CORRECTION ; ALOS PALSAR ; GAP MODEL ; ETM+ DATA ; INVERSION ; LANDSAT ; CLASSIFICATION
WOS类目Environmental Sciences ; Geosciences, Multidisciplinary ; Remote Sensing ; Imaging Science & Photographic Technology
WOS研究方向Environmental Sciences & Ecology ; Geology ; Remote Sensing ; Imaging Science & Photographic Technology
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/209541
作者单位1.Ningxia Univ, State Key Lab Breeding Base Land Degradat & Ecol, Yinchuan, Peoples R China;
2.Ningxia Univ, Minist Educ, Key Lab Restorat & Reconstruct Degraded Ecosyst N, Yinchuan, Peoples R China;
3.Ningxia Univ, Sch Resources & Environm, Yinchuan, Peoples R China;
4.Helan Mt Natl Nat Reserve Adm, Forest Ecosyst Res Stn, Yinchuan, Peoples R China
推荐引用方式
GB/T 7714
Wang, Xinyun,Guo, Yige,He, Jie,et al. Estimation of forest aboveground biomass from HJ1B imagery using a canopy reflectance model and a forest growth model[J],2018,33(2):148-162.
APA Wang, Xinyun,Guo, Yige,He, Jie,Du, Lingtong,&Hu, Tianhua.(2018).Estimation of forest aboveground biomass from HJ1B imagery using a canopy reflectance model and a forest growth model.GEOCARTO INTERNATIONAL,33(2),148-162.
MLA Wang, Xinyun,et al."Estimation of forest aboveground biomass from HJ1B imagery using a canopy reflectance model and a forest growth model".GEOCARTO INTERNATIONAL 33.2(2018):148-162.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang, Xinyun]的文章
[Guo, Yige]的文章
[He, Jie]的文章
百度学术
百度学术中相似的文章
[Wang, Xinyun]的文章
[Guo, Yige]的文章
[He, Jie]的文章
必应学术
必应学术中相似的文章
[Wang, Xinyun]的文章
[Guo, Yige]的文章
[He, Jie]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。