Arid
DOI10.5004/dwt.2018.22249
Evolutionary support vector machine for evapotranspiration estimation (case study: Haji Abad region, Hormozgan province)
Mohamrnadrezapour, Omolbani1; Moradi, Abolfath2; Kisi, Ozgur3; Sharifazari, Salman1
通讯作者Mohamrnadrezapour, Omolbani
来源期刊DESALINATION AND WATER TREATMENT
ISSN1944-3994
EISSN1944-3986
出版年2018
卷号111页码:183-191
英文摘要

Accurate estimation of evapotranspiration (ET) values is of crucial importance in hydrology, agriculture and agro-meteorology issues. The objective of this research was to evaluate the use of evolutionary support vector machine (ESVM) to model daily ET using limited climatic data. For this aim, the most common evolutionary method, genetic algorithm (GA), was used for optimization of SVM variables. For the ESVM, four input combinations of maximum air temperature (T-max), minimum air temperature (T-min), wind speed (U-2), daily solar radiation (Rs), relative humidity (Rh-mean) and mean temperature (T-mean) were tried. Climatic data covering 3-year period of October 2004-October 2007 were obtained from the extremely arid and hot region of Haji Abad located in the northern region of Hormozgan province, Iran. Artificial Neural Network (ANN) as a base model was also applied for evaluating modeling accuracy of the ESVM in estimating ET. The results of the ESVM and ANN models were evaluated by comparing their estimates with the measured lysimetric data. The root mean square error (RMSE), coefficient of efficiency (CE) and the coefficient of determination (R-2) were used as comparison criteria. According to the results obtained, the ESVM2 whose input variables are T-mean and Rh-mean was selected as the best model in estimating ET.


英文关键词Evapotranspiration Lysimetric data Estimation SVM Genetic algorithm ANN
类型Article
语种英语
国家Iran ; Georgia
收录类别SCI-E
WOS记录号WOS:000445125200019
WOS关键词NEURAL-NETWORKS ; MODELS
WOS类目Engineering, Chemical ; Water Resources
WOS研究方向Engineering ; Water Resources
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/208563
作者单位1.Univ Zabol, Dept Water Engn, POB 98615-538, Zabol, Iran;
2.AREEO, Soil & Water Res Dept, Fars Agr & Nat Resources Res & Educ Ctr, Shiraz, Iran;
3.Ilia State Univ, Fac Nat Sci & Engn, Tbilisi, Georgia
推荐引用方式
GB/T 7714
Mohamrnadrezapour, Omolbani,Moradi, Abolfath,Kisi, Ozgur,et al. Evolutionary support vector machine for evapotranspiration estimation (case study: Haji Abad region, Hormozgan province)[J],2018,111:183-191.
APA Mohamrnadrezapour, Omolbani,Moradi, Abolfath,Kisi, Ozgur,&Sharifazari, Salman.(2018).Evolutionary support vector machine for evapotranspiration estimation (case study: Haji Abad region, Hormozgan province).DESALINATION AND WATER TREATMENT,111,183-191.
MLA Mohamrnadrezapour, Omolbani,et al."Evolutionary support vector machine for evapotranspiration estimation (case study: Haji Abad region, Hormozgan province)".DESALINATION AND WATER TREATMENT 111(2018):183-191.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Mohamrnadrezapour, Omolbani]的文章
[Moradi, Abolfath]的文章
[Kisi, Ozgur]的文章
百度学术
百度学术中相似的文章
[Mohamrnadrezapour, Omolbani]的文章
[Moradi, Abolfath]的文章
[Kisi, Ozgur]的文章
必应学术
必应学术中相似的文章
[Mohamrnadrezapour, Omolbani]的文章
[Moradi, Abolfath]的文章
[Kisi, Ozgur]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。