Arid
DOI10.1007/s12517-018-3835-5
Drought modeling: a comparative study between time series and neuro-fuzzy approaches
Rafiei-Sardooi, Elham1; Mohseni-Saravi, Mohsen2; Barkhori, Saeed1; Azareh, Ali3; Choubin, Bahram4; Jafari-Shalamzar, Masoud5
通讯作者Azareh, Ali
来源期刊ARABIAN JOURNAL OF GEOSCIENCES
ISSN1866-7511
EISSN1866-7538
出版年2018
卷号11期号:17
英文摘要

Meteorological drought is one of the inseparable climatic phenomena in sub-tropical countries such as Iran. In these areas, which encompass the vastest deserts of the world, the effects of precipitation scarcity on water resources manifest themselves promptly. This study employed the standardized precipitation index (SPI), as a meteorological drought assessment tool, over 3- and 12-month time scales during the years 1970 to 2014. We compared the accuracy of the neuro-fuzzy model (as a non-linear model) with time-series models for modeling of drought. Time-series analysis was conducted according to the Box-Jenkins method. ARIMA (3, 0, 4) and ARIMA (2, 0, 1) were selected as the best-fitting time-series models for modeling SPI at time scales of 3 and 12 months, respectively. The results indicated that the neuro-fuzzy model significantly outperforms the time-series models. The Nash-Sutcliffe efficiency (NSE) coefficients are equal to 0.12 and 0.60 respectively for SPI3 and SPI12 estimated by ARIMA model, while NSE coefficients for neuro-fuzzy model are equal to 0.52 and 0.80 respectively for SPI3 and SPI12 in validation period. Also, the violin plots demonstrated that the neuro-fuzzy model (unlike the ARIMA model) is well-suited to estimate the volatility of SPI values for wet and dry periods, which is a very important prerequisite for efficient water resources’ management.


英文关键词Drought Jiroft plain Neuro-fuzzy SPI Time-series model
类型Article
语种英语
国家Iran
收录类别SCI-E
WOS记录号WOS:000443062900008
WOS关键词INFERENCE SYSTEM ; STOCHASTIC-MODELS ; CLIMATE SIGNALS ; NETWORK ; BASIN ; REGRESSION ; ANFIS ; IRAN
WOS类目Geosciences, Multidisciplinary
WOS研究方向Geology
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/207753
作者单位1.Univ Jiroft, Fac Nat Resources, Kerman, Iran;
2.Univ Tehran, Dept Reclamat Arid & Mountainous Reg, Karaj 315853314, Iran;
3.Univ Jiroft, Dept Geog, Kerman, Iran;
4.Sari Agr Sci & Nat Resources Univ, Dept Watershed Management, POB 737, Sari, Iran;
5.Gorgan Univ Agr Sci & Nat Resources, Fac Nat Resources, Gorgan, Iran
推荐引用方式
GB/T 7714
Rafiei-Sardooi, Elham,Mohseni-Saravi, Mohsen,Barkhori, Saeed,et al. Drought modeling: a comparative study between time series and neuro-fuzzy approaches[J],2018,11(17).
APA Rafiei-Sardooi, Elham,Mohseni-Saravi, Mohsen,Barkhori, Saeed,Azareh, Ali,Choubin, Bahram,&Jafari-Shalamzar, Masoud.(2018).Drought modeling: a comparative study between time series and neuro-fuzzy approaches.ARABIAN JOURNAL OF GEOSCIENCES,11(17).
MLA Rafiei-Sardooi, Elham,et al."Drought modeling: a comparative study between time series and neuro-fuzzy approaches".ARABIAN JOURNAL OF GEOSCIENCES 11.17(2018).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Rafiei-Sardooi, Elham]的文章
[Mohseni-Saravi, Mohsen]的文章
[Barkhori, Saeed]的文章
百度学术
百度学术中相似的文章
[Rafiei-Sardooi, Elham]的文章
[Mohseni-Saravi, Mohsen]的文章
[Barkhori, Saeed]的文章
必应学术
必应学术中相似的文章
[Rafiei-Sardooi, Elham]的文章
[Mohseni-Saravi, Mohsen]的文章
[Barkhori, Saeed]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。