Arid
DOI10.1016/j.agwat.2018.06.018
Reference evapotranspiration prediction using hybridized fuzzy model with firefly algorithm: Regional case study in Burkina Faso
Tao, Hai1; Diop, Lamine2; Bodian, Ansoumana3; Djaman, Koffi4; Ndiaye, Papa Malick3; Yaseen, Zaher Mundher5
通讯作者Yaseen, Zaher Mundher
来源期刊AGRICULTURAL WATER MANAGEMENT
ISSN0378-3774
EISSN1873-2283
出版年2018
卷号208页码:140-151
英文摘要

Reference Evapotranspiration (ETo) is one of the major components of the hydrological cycle that is very essential in water resources planning, irrigation and drainage management and several other hydrology processes. In irrigation system and design, the prediction of ETo is vital and indispensable for the quantification of crop water needs. This study investigates the capabilities of hybridized fuzzy model with firefly algorithm (ANFIS-FA) for predicting daily reference evapotranspiration over Burkina Faso region. Metrological information at Bobo Dioulasso, Bur Dedougou, and Ouahigouya stations, in Sahelian, Sudano-Sahelian, and Sudanian zone, are used for modelling development. Six different climatic input variable combinations corresponding to 6 models are inspected. The daily Penman-Monteith reference evapotranspiration for the time-period (1998-2012) are used to train and test the models. Several numerical indicators in addition to Taylor diagram are considered to evaluate the performance of the models. Results indicated that the hybrid ANFIS-FA model outperformed the classical ANFIS-based model for all three stations and the model with full inputs climatic data gave the best results. Furthermore, ANFIS-FA is performed the best for Bur Dedougou (Sahalian-Soudanian region) and less at Ouahigouya (sahalian region). In quantitative terms and for instance Bur Dedougou station, ANFIS-FA model increased the prediction accuracy remarkably (SI = 0.043, R-2 = 0.97, MAPE = 0.035 and RMSE = 0.24) compared with ANFIS-based model (SI = 0.068, R-2 = 0.89, MAPE = 0.037 and RMSE = 0.378). Results revealed the influence of utilizing nature-inspired firefly algorithm to substantially improve performance of the classical ANFIS model optimization for the applied application. Also, the applied modelling strategy can bring a trustful expert intelligent system for predicting reference evapotranspiration at the west desert of Africa.


英文关键词Reference evapotranspiration prediction Firefly algorithm Hybrid models Agriculture management Burkina Faso region
类型Article
语种英语
国家Peoples R China ; Senegal ; USA ; Vietnam
收录类别SCI-E
WOS记录号WOS:000441856800013
WOS关键词ARTIFICIAL NEURAL-NETWORK ; INFERENCE SYSTEM ANFIS ; CLIMATIC DATA ; GENETIC ALGORITHM ; CROP EVAPOTRANSPIRATION ; COMPUTING TECHNIQUE ; SEDIMENT TRANSPORT ; REGRESSION ; OPTIMIZATION ; PERFORMANCE
WOS类目Agronomy ; Water Resources
WOS研究方向Agriculture ; Water Resources
来源机构New Mexico State University
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/207396
作者单位1.Baoji Univ Arts & Sci, Dept Comp Sci, Baoji, Shaanxi, Peoples R China;
2.Univ Gaston Berger, UFR Sci Agron Aquaculture & Technol Alimentaires, BP 234, St Louis, Senegal;
3.Univ Gaston Berger, Lab Leidi Dynam Terr & Dev, BP 234, St Louis, Senegal;
4.New Mexico State Univ, Dept Plant & Environm Sci, Agr Sci Ctr Farmington, POB 1018, Farmington, NM 87499 USA;
5.Ton Duc Thang Univ, Sustainable Dev Civil Engn Res Grp, Fac Civil Engn, Ho Chi Minh City, Vietnam
推荐引用方式
GB/T 7714
Tao, Hai,Diop, Lamine,Bodian, Ansoumana,et al. Reference evapotranspiration prediction using hybridized fuzzy model with firefly algorithm: Regional case study in Burkina Faso[J]. New Mexico State University,2018,208:140-151.
APA Tao, Hai,Diop, Lamine,Bodian, Ansoumana,Djaman, Koffi,Ndiaye, Papa Malick,&Yaseen, Zaher Mundher.(2018).Reference evapotranspiration prediction using hybridized fuzzy model with firefly algorithm: Regional case study in Burkina Faso.AGRICULTURAL WATER MANAGEMENT,208,140-151.
MLA Tao, Hai,et al."Reference evapotranspiration prediction using hybridized fuzzy model with firefly algorithm: Regional case study in Burkina Faso".AGRICULTURAL WATER MANAGEMENT 208(2018):140-151.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Tao, Hai]的文章
[Diop, Lamine]的文章
[Bodian, Ansoumana]的文章
百度学术
百度学术中相似的文章
[Tao, Hai]的文章
[Diop, Lamine]的文章
[Bodian, Ansoumana]的文章
必应学术
必应学术中相似的文章
[Tao, Hai]的文章
[Diop, Lamine]的文章
[Bodian, Ansoumana]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。