Arid
DOI10.1038/s41598-017-07197-6
Prediction of aboveground grassland biomass on the Loess Plateau, China, using a random forest algorithm
Wang, Yinyin1,2,3; Wu, Gaolin1,2; Deng, Lei1,2; Tang, Zhuangsheng4; Wang, Kaibo5; Sun, Wenyi1,2; Shangguan, Zhouping1,2,3
通讯作者Shangguan, Zhouping
来源期刊SCIENTIFIC REPORTS
ISSN2045-2322
出版年2017
卷号7
英文摘要

Grasslands are an important component of terrestrial ecosystems that play a crucial role in the carbon cycle and climate change. In this study, we collected aboveground biomass (AGB) data from 223 grassland quadrats distributed across the Loess Plateau from 2011 to 2013 and predicted the spatial distribution of the grassland AGB at a 100-m resolution from both meteorological station and remote sensing data (TM and MODIS) using a Random Forest (RF) algorithm. The results showed that the predicted grassland AGB on the Loess Plateau decreased from east to west. Vegetation indexes were positively correlated with grassland AGB, and the normalized difference vegetation index (NDVI) acquired from TM data was the most important predictive factor. Tussock and shrub tussock had the highest AGB, and desert steppe had the lowest. Rainfall higher than 400 m might have benefitted the grassland AGB. Compared with those obtained for the bagging, mboost and the support vector machine (SVM) models, higher values for the mean Pearson coefficient (R) and the symmetric index of agreement (lambda) were obtained for the RF model, indicating that this RF model could reasonably estimate the grassland AGB (65.01%) on the Loess Plateau.


类型Article
语种英语
国家Peoples R China
收录类别SCI-E
WOS记录号WOS:000425972700010
WOS关键词SOIL-MOISTURE ; LANDSAT 8 ; VEGETATION ; ASSIMILATION ; PRECIPITATION ; REGION ; WINTER ; MODEL ; INDEX ; AREA
WOS类目Multidisciplinary Sciences
WOS研究方向Science & Technology - Other Topics
来源机构西北农林科技大学 ; 中国科学院地球环境研究所
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/202330
作者单位1.Chinese Acad Sci, Inst Soil & Water Conservat, State Key Lab Soil Eros & Dryland Farming Loess P, Yangling 712100, Shaanxi, Peoples R China;
2.Minist Water Resources, Yangling 712100, Shaanxi, Peoples R China;
3.Univ Chinese Acad Sci, Beijing 100049, Peoples R China;
4.Northwest A&F Univ, State Key Lab Soil Eros & Dryland Farming Loess P, Yangling 712100, Shaanxi, Peoples R China;
5.Chinese Acad Sci, Inst Earth Environm, State Key Lab Loess & Quaternary Geol, Xian 710075, Shaanxi, Peoples R China
推荐引用方式
GB/T 7714
Wang, Yinyin,Wu, Gaolin,Deng, Lei,et al. Prediction of aboveground grassland biomass on the Loess Plateau, China, using a random forest algorithm[J]. 西北农林科技大学, 中国科学院地球环境研究所,2017,7.
APA Wang, Yinyin.,Wu, Gaolin.,Deng, Lei.,Tang, Zhuangsheng.,Wang, Kaibo.,...&Shangguan, Zhouping.(2017).Prediction of aboveground grassland biomass on the Loess Plateau, China, using a random forest algorithm.SCIENTIFIC REPORTS,7.
MLA Wang, Yinyin,et al."Prediction of aboveground grassland biomass on the Loess Plateau, China, using a random forest algorithm".SCIENTIFIC REPORTS 7(2017).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang, Yinyin]的文章
[Wu, Gaolin]的文章
[Deng, Lei]的文章
百度学术
百度学术中相似的文章
[Wang, Yinyin]的文章
[Wu, Gaolin]的文章
[Deng, Lei]的文章
必应学术
必应学术中相似的文章
[Wang, Yinyin]的文章
[Wu, Gaolin]的文章
[Deng, Lei]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。