Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.1038/s41598-017-07197-6 |
Prediction of aboveground grassland biomass on the Loess Plateau, China, using a random forest algorithm | |
Wang, Yinyin1,2,3; Wu, Gaolin1,2; Deng, Lei1,2; Tang, Zhuangsheng4; Wang, Kaibo5; Sun, Wenyi1,2; Shangguan, Zhouping1,2,3 | |
通讯作者 | Shangguan, Zhouping |
来源期刊 | SCIENTIFIC REPORTS
![]() |
ISSN | 2045-2322 |
出版年 | 2017 |
卷号 | 7 |
英文摘要 | Grasslands are an important component of terrestrial ecosystems that play a crucial role in the carbon cycle and climate change. In this study, we collected aboveground biomass (AGB) data from 223 grassland quadrats distributed across the Loess Plateau from 2011 to 2013 and predicted the spatial distribution of the grassland AGB at a 100-m resolution from both meteorological station and remote sensing data (TM and MODIS) using a Random Forest (RF) algorithm. The results showed that the predicted grassland AGB on the Loess Plateau decreased from east to west. Vegetation indexes were positively correlated with grassland AGB, and the normalized difference vegetation index (NDVI) acquired from TM data was the most important predictive factor. Tussock and shrub tussock had the highest AGB, and desert steppe had the lowest. Rainfall higher than 400 m might have benefitted the grassland AGB. Compared with those obtained for the bagging, mboost and the support vector machine (SVM) models, higher values for the mean Pearson coefficient (R) and the symmetric index of agreement (lambda) were obtained for the RF model, indicating that this RF model could reasonably estimate the grassland AGB (65.01%) on the Loess Plateau. |
类型 | Article |
语种 | 英语 |
国家 | Peoples R China |
收录类别 | SCI-E |
WOS记录号 | WOS:000425972700010 |
WOS关键词 | SOIL-MOISTURE ; LANDSAT 8 ; VEGETATION ; ASSIMILATION ; PRECIPITATION ; REGION ; WINTER ; MODEL ; INDEX ; AREA |
WOS类目 | Multidisciplinary Sciences |
WOS研究方向 | Science & Technology - Other Topics |
来源机构 | 西北农林科技大学 ; 中国科学院地球环境研究所 |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/202330 |
作者单位 | 1.Chinese Acad Sci, Inst Soil & Water Conservat, State Key Lab Soil Eros & Dryland Farming Loess P, Yangling 712100, Shaanxi, Peoples R China; 2.Minist Water Resources, Yangling 712100, Shaanxi, Peoples R China; 3.Univ Chinese Acad Sci, Beijing 100049, Peoples R China; 4.Northwest A&F Univ, State Key Lab Soil Eros & Dryland Farming Loess P, Yangling 712100, Shaanxi, Peoples R China; 5.Chinese Acad Sci, Inst Earth Environm, State Key Lab Loess & Quaternary Geol, Xian 710075, Shaanxi, Peoples R China |
推荐引用方式 GB/T 7714 | Wang, Yinyin,Wu, Gaolin,Deng, Lei,et al. Prediction of aboveground grassland biomass on the Loess Plateau, China, using a random forest algorithm[J]. 西北农林科技大学, 中国科学院地球环境研究所,2017,7. |
APA | Wang, Yinyin.,Wu, Gaolin.,Deng, Lei.,Tang, Zhuangsheng.,Wang, Kaibo.,...&Shangguan, Zhouping.(2017).Prediction of aboveground grassland biomass on the Loess Plateau, China, using a random forest algorithm.SCIENTIFIC REPORTS,7. |
MLA | Wang, Yinyin,et al."Prediction of aboveground grassland biomass on the Loess Plateau, China, using a random forest algorithm".SCIENTIFIC REPORTS 7(2017). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。