Arid
DOI10.1016/j.rse.2017.07.026
Development and evaluation of a lookup-table-based approach to data fusion for seasonal wetlands monitoring: An integrated use of AMSR series, MODIS, and Landsat
Mizuochi, Hiroki1; Hiyama, Tetsuya2; Ohta, Takeshi3; Fujioka, Yuichiro4; Kambatuku, Jack R.5; Iijima, Morio6; Nasahara, Kenlo N.1
通讯作者Mizuochi, Hiroki
来源期刊REMOTE SENSING OF ENVIRONMENT
ISSN0034-4257
EISSN1879-0704
出版年2017
卷号199页码:370-388
英文摘要

Broad scale monitoring of inland waters is essential to research on carbon and water cycles, and for application in the monitoring of disasters including floods and droughts on various spatial and temporal scales. Satellite remote sensing using spatiotemporal data fusion (STF) has recently attracted attention as a way of simultaneously describing spatial heterogeneity and tracking the temporal variability of inland waters. However, existing STF approaches have limitations in describing abrupt temporal changes, integrating "dissimilar" datasets (i.e., fusions between microwave and optical data), and compiling long-term, frequent STF datasets. To overcome these limitations, in this study we developed and evaluated a lookup table (LUT)-based STF, termed database unmixing (DBUX), using multiple types of satellite data (AMSR series, MODIS, and Landsat), and applied it to semi-arid seasonal wetlands in Namibia. The results show that DBUX is: 1) flexible in integrating optical data (MODIS or Landsat) with microwave (AMSR series) and seasonal (day of year) information; 2) able to generate long-term, frequent Landsat-like datasets; and 3) more reliable than an existing approach (spatial and temporal adaptive reflectance fusion model; STARFM) for tracking dynamic temporal variations in seasonal wetlands. Water maps retrieved from the resulting STF dataset for the wetlands had a 30-m spatial resolution and a temporal frequency of 1 or 2 days, and the dataset covered from 2002 to 2015. The time series water maps accurately described both seasonal and interannual changes in the wetlands, and could act as a basis for understanding the hydrological features of the region. Further studies are required to enable application of DBUX in other regions, and for other landscapes with different satellite sensor combinations.


英文关键词AMSR-E AMSR2 Data fusion Database unmixing (DBUX) Landsat ETM Landsat TM MODIS Seasonal wetlands
类型Article
语种英语
国家Japan ; Namibia
收录类别SCI-E
WOS记录号WOS:000410469100028
WOS关键词SPATIOTEMPORAL REFLECTANCE FUSION ; WATER INDEX NDWI ; TIME-SERIES ; SURFACE-WATER ; BLENDING LANDSAT ; RIVER-BASIN ; RESOLUTION ; GEOLOCATION ; EMISSIONS ; DYNAMICS
WOS类目Environmental Sciences ; Remote Sensing ; Imaging Science & Photographic Technology
WOS研究方向Environmental Sciences & Ecology ; Remote Sensing ; Imaging Science & Photographic Technology
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/201998
作者单位1.Univ Tsukuba, Fac Life & Environm Sci, 1-1-1 Tennoudai, Tsukuba, Ibaraki 3058572, Japan;
2.Nagoya Univ, Inst Space Earth Environm Res ISEE, Chikusa Ku, Furo Cho, Nagoya, Aichi 4648601, Japan;
3.Nagoya Univ, Grad Sch Bioagr Sci, Chikusa Ku, Furo Cho, Nagoya, Aichi 4648601, Japan;
4.Kyushu Univ, Grad Sch Social & Cultural Studies, Nishi Ku, 744 Motooka, Fukuoka 8190395, Japan;
5.Univ Namibia, Fac Agr & Nat Resources, Oshakati, Namibia;
6.Kindai Univ, Sch Agr, Nara 6318505, Japan
推荐引用方式
GB/T 7714
Mizuochi, Hiroki,Hiyama, Tetsuya,Ohta, Takeshi,et al. Development and evaluation of a lookup-table-based approach to data fusion for seasonal wetlands monitoring: An integrated use of AMSR series, MODIS, and Landsat[J],2017,199:370-388.
APA Mizuochi, Hiroki.,Hiyama, Tetsuya.,Ohta, Takeshi.,Fujioka, Yuichiro.,Kambatuku, Jack R..,...&Nasahara, Kenlo N..(2017).Development and evaluation of a lookup-table-based approach to data fusion for seasonal wetlands monitoring: An integrated use of AMSR series, MODIS, and Landsat.REMOTE SENSING OF ENVIRONMENT,199,370-388.
MLA Mizuochi, Hiroki,et al."Development and evaluation of a lookup-table-based approach to data fusion for seasonal wetlands monitoring: An integrated use of AMSR series, MODIS, and Landsat".REMOTE SENSING OF ENVIRONMENT 199(2017):370-388.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Mizuochi, Hiroki]的文章
[Hiyama, Tetsuya]的文章
[Ohta, Takeshi]的文章
百度学术
百度学术中相似的文章
[Mizuochi, Hiroki]的文章
[Hiyama, Tetsuya]的文章
[Ohta, Takeshi]的文章
必应学术
必应学术中相似的文章
[Mizuochi, Hiroki]的文章
[Hiyama, Tetsuya]的文章
[Ohta, Takeshi]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。