Arid
DOI10.1016/j.rse.2016.11.016
A Cloud masking algorithm for the XBAER aerosol retrieval using MERIS data
Mei, Linlu1; Vountas, Marco1; Gomez-Chova, Luis2; Rozanov, Vladimir1; Jaeger, Malte1; Lotz, Wolfhardt1; Burrows, John P.1; Hollmann, Rainer3
通讯作者Mei, Linlu
来源期刊REMOTE SENSING OF ENVIRONMENT
ISSN0034-4257
EISSN1879-0704
出版年2017
卷号197页码:141-160
英文摘要

To determine aerosol optical thickness, AOT, and other geophysical parameters describing conditions in the atmosphere and at the earth’s surface by inversion of remote sensing measurements from space based instrumentation, it is necessary to separate ground scenes into cloud free and cloudy or cloud contaminated. Identifying the presence of cloud in a ground scene and establishing an accurate and adequate cloud mask is a challenging task. In this study, measurements by the European Space Agency (ESA) MEdium Resolution Imaging Spectrometer (MERIS) have been used to develop a cloud identification and cloud mask algorithm for preprocessing prior to application of the new algorithm called eXtensible Bremen AErosol Retrieval (XBAER), which retrieves AOT. The new XBAER cloud identification and cloud mask algorithm is called XBAER-CM. This uses thresholds of the reflectance and reflectance ratios measured by MERIS at Top Of Atmosphere (TOA). In this study the parameters used to determine the presence of cloud in ground scenes are i) the brightness of the scenes, ii) the homogeneity or variability of the radiance and iii) cloud height or altitude information. The threshold values used to identify the presence of cloud are selected by using accurate radiative transfer modeling with different surface and atmospheric scenarios. A histogram analysis has been used for different cloud (thin, thick, two-layers, aerosol contaminated cloud), aerosol (dust and biomass burning) and surface scenarios (vegetation, urban, desert and water). Additionally, a snow/ice detection algorithm has been adapted from MerIs Cloud fRation fOr Sciamachy (MICROS) algorithm.


A validation for the resulting cloud mask data products has been undertaken. This comprised i) comparison of regions scenes, which have beenmanually generated by experts and ii) more global comparisonwith cloud identification data products from surface synoptic observations (SYNOP) and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP). As a part of verification and validation, the XBAER-CM results have been shown to be in good agreement with the "manually"-created masks, considered to be the true reference for a set of challenging scenarios. The overall accuracy compared with SYNOP and CALIOP are 84.4% and 83.2%, respectively. The XBAER-CM data product is a standalone data product but valuable for use with algorithms, which retrieve other cloud, aerosol and surface parameters from the measurements of MERIS and the follow on instruments such as Sentinel 3 Ocean and Land Color Instrument (OLCI) now in space. (C) 2016 Elsevier Inc. All rights reserved.


英文关键词Cloud mask Aerosol MERIS XBAER
类型Article
语种英语
国家Germany ; Spain
收录类别SCI-E
WOS记录号WOS:000403544900011
WOS关键词TOP HEIGHT ; MODIS ; LAND ; CLASSIFICATION ; VALIDATION ; FRACTION ; SCHEMES ; TRENDS
WOS类目Environmental Sciences ; Remote Sensing ; Imaging Science & Photographic Technology
WOS研究方向Environmental Sciences & Ecology ; Remote Sensing ; Imaging Science & Photographic Technology
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/201994
作者单位1.Univ Bremen, Inst Environm Phys, Bremen, Germany;
2.Univ Valencia, Image Proc Lab, Valencia, Spain;
3.Deutsch Wetterdienst DWD, Offenbach, Germany
推荐引用方式
GB/T 7714
Mei, Linlu,Vountas, Marco,Gomez-Chova, Luis,et al. A Cloud masking algorithm for the XBAER aerosol retrieval using MERIS data[J],2017,197:141-160.
APA Mei, Linlu.,Vountas, Marco.,Gomez-Chova, Luis.,Rozanov, Vladimir.,Jaeger, Malte.,...&Hollmann, Rainer.(2017).A Cloud masking algorithm for the XBAER aerosol retrieval using MERIS data.REMOTE SENSING OF ENVIRONMENT,197,141-160.
MLA Mei, Linlu,et al."A Cloud masking algorithm for the XBAER aerosol retrieval using MERIS data".REMOTE SENSING OF ENVIRONMENT 197(2017):141-160.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Mei, Linlu]的文章
[Vountas, Marco]的文章
[Gomez-Chova, Luis]的文章
百度学术
百度学术中相似的文章
[Mei, Linlu]的文章
[Vountas, Marco]的文章
[Gomez-Chova, Luis]的文章
必应学术
必应学术中相似的文章
[Mei, Linlu]的文章
[Vountas, Marco]的文章
[Gomez-Chova, Luis]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。