Arid
DOI10.3390/rs9121336
High Spatial Resolution Visual Band Imagery Outperforms Medium Resolution Spectral Imagery for Ecosystem Assessment in the Semi-Arid Brazilian Sertao
Goldblatt, Ran; Ballesteros, Alexis Rivera; Burney, Jennifer
通讯作者Burney, Jennifer
来源期刊REMOTE SENSING
ISSN2072-4292
出版年2017
卷号9期号:12
英文摘要

Semi-arid ecosystems play a key role in global agricultural production, seasonal carbon cycle dynamics, and longer-run climate change. Because semi-arid landscapes are heterogeneous and often sparsely vegetated, repeated and large-scale ecosystem assessments of these regions have to date been impossible. Here, we assess the potential of high-spatial resolution visible band imagery for semi-arid ecosystem mapping. We use WorldView satellite imagery at 0.3-0.5 m resolution to develop a reference data set of nearly 10,000 labeled examples of three classes-trees, shrubs/grasses, and bare land-across 1000 km(2) of the semi-arid Sertao region of northeast Brazil. Using Google Earth Engine, we show that classification with low-spectral but high-spatial resolution input (WorldView) outperforms classification with the full spectral information available from Landsat 30 m resolution imagery as input. Classification with high spatial resolution input improves detection of sparse vegetation and distinction between trees and seasonal shrubs and grasses, two features which are lost at coarser spatial (but higher spectral) resolution input. Our total tree cover estimates for the study area disagree with recent estimates using other methods that may underestimate treecover because they confuse trees with seasonal vegetation (shrubs and grasses). This distinction is important for monitoring seasonal and long-run carbon cycle and ecosystem health. Our results suggest that newer remote sensing products that promise high frequency global coverage at high spatial but lower spectral resolution may offer new possibilities for direct monitoring of the world’s semi-arid ecosystems, and we provide methods that could be scaled to do so.


英文关键词remote sensing semi-arid ecosystem assessment land use change image classification seasonal vegetation carbon cycle Google Earth Engine
类型Article
语种英语
国家USA
收录类别SCI-E
WOS记录号WOS:000419235700130
WOS关键词LAND-COVER CLASSIFICATION ; RANDOM FOREST CLASSIFIER ; PIXEL ; DESERTIFICATION ; VARIABILITY ; SENSITIVITY ; VALIDATION ; ACCURACY ; EXTENT ; AREAS
WOS类目Remote Sensing
WOS研究方向Remote Sensing
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/201979
作者单位Univ Calif San Diego, Sch Global Policy & Strategy, San Diego, CA 92093 USA
推荐引用方式
GB/T 7714
Goldblatt, Ran,Ballesteros, Alexis Rivera,Burney, Jennifer. High Spatial Resolution Visual Band Imagery Outperforms Medium Resolution Spectral Imagery for Ecosystem Assessment in the Semi-Arid Brazilian Sertao[J],2017,9(12).
APA Goldblatt, Ran,Ballesteros, Alexis Rivera,&Burney, Jennifer.(2017).High Spatial Resolution Visual Band Imagery Outperforms Medium Resolution Spectral Imagery for Ecosystem Assessment in the Semi-Arid Brazilian Sertao.REMOTE SENSING,9(12).
MLA Goldblatt, Ran,et al."High Spatial Resolution Visual Band Imagery Outperforms Medium Resolution Spectral Imagery for Ecosystem Assessment in the Semi-Arid Brazilian Sertao".REMOTE SENSING 9.12(2017).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Goldblatt, Ran]的文章
[Ballesteros, Alexis Rivera]的文章
[Burney, Jennifer]的文章
百度学术
百度学术中相似的文章
[Goldblatt, Ran]的文章
[Ballesteros, Alexis Rivera]的文章
[Burney, Jennifer]的文章
必应学术
必应学术中相似的文章
[Goldblatt, Ran]的文章
[Ballesteros, Alexis Rivera]的文章
[Burney, Jennifer]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。